Package weka.classifiers

Examples of weka.classifiers.Evaluation.evaluateModel()


      trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime;
    trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
    testTimeStart = System.currentTimeMillis();
    if(canMeasureCPUTime)
      CPUStartTime = thMonitor.getThreadUserTime(thID);
    eval.evaluateModel(m_Classifier, test);
    if(canMeasureCPUTime)
      testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime;
    testTimeElapsed = System.currentTimeMillis() - testTimeStart;
    thMonitor = null;
   
View Full Code Here


   
    //testing classifier
    testTimeStart = System.currentTimeMillis();
    if(canMeasureCPUTime)
      CPUStartTime = thMonitor.getThreadUserTime(thID);
    predictions = eval.evaluateModel(m_Classifier, test);
    if(canMeasureCPUTime)
      testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime;
    testTimeElapsed = System.currentTimeMillis() - testTimeStart;
    thMonitor = null;
   
View Full Code Here

      trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime;
    trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
    testTimeStart = System.currentTimeMillis();
    if(canMeasureCPUTime)
      CPUStartTime = thMonitor.getThreadUserTime(thID);
    eval.evaluateModel(m_Classifier, test);
    if(canMeasureCPUTime)
      testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime;
    testTimeElapsed = System.currentTimeMillis() - testTimeStart;
    thMonitor = null;
   
View Full Code Here

     
      smo.buildClassifier(train);
     
     
      Evaluation eval = new Evaluation(train);
      eval.evaluateModel(smo, test);
     
//      System.out.println(eval.toSummaryString("results:\n", false));
      acc[acc.length - max] = eval.pctCorrect();
//      System.out.println("accuracy: "+eval.pctCorrect());
     
View Full Code Here

    m_cuts = cuts;
    m_values = values;
   
    // Compute sum of squared errors
    Evaluation eval = new Evaluation(insts);
    eval.evaluateModel(this, insts);
    double msq = eval.rootMeanSquaredError();
   
    // Check whether this is the best attribute
    if (msq < m_minMsq) {
      m_minMsq = msq;
View Full Code Here

        // learning scheme.
  Instances train = trainData.trainCV(m_NumFolds, j, new Random(1));
  Instances test = trainData.testCV(m_NumFolds, j);
  m_Classifier.buildClassifier(train);
  evaluation.setPriors(train);
  evaluation.evaluateModel(m_Classifier, test);
      }
      double error = evaluation.errorRate();
      if (m_Debug) {
  System.err.println("Cross-validated error rate: "
         + Utils.doubleToString(error, 6, 4));
View Full Code Here

      trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime;
    trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
    testTimeStart = System.currentTimeMillis();
    if(canMeasureCPUTime)
      CPUStartTime = thMonitor.getThreadUserTime(thID);
    eval.evaluateModel(m_Classifier, test);
    if(canMeasureCPUTime)
      testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime;
    testTimeElapsed = System.currentTimeMillis() - testTimeStart;
    thMonitor = null;
   
View Full Code Here

    m_NumGenerated = 0;
    double sumOfWeights = train.sumOfWeights();
    for (int j = 0; j < getNumIterations(); j++) {
      performIteration(trainYs, trainFs, probs, trainN, sumOfWeights);
      Evaluation eval = new Evaluation(train);
      eval.evaluateModel(this, test);
      results[j] += eval.correct();
    }
  }
      }
     
View Full Code Here

    // calculate error rate if only root node
    if (expansion==0) {
      m_roots[i].m_isLeaf = true;
      eval = new Evaluation(test[i]);
      eval.evaluateModel(m_roots[i], test[i]);
      if (m_UseErrorRate) expansionError += eval.errorRate();
      else expansionError += eval.rootMeanSquaredError();
      count ++;
    }
View Full Code Here

    m_Heuristic, m_UseGini)) {
        m_roots[i] = null; // cannot be expanded
        continue;
      }
      eval = new Evaluation(test[i]);
      eval.evaluateModel(m_roots[i], test[i]);
      if (m_UseErrorRate) expansionError += eval.errorRate();
      else expansionError += eval.rootMeanSquaredError();
      count ++;
    }
  }
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.