Package org.jquantlib.math.matrixutilities

Examples of org.jquantlib.math.matrixutilities.Array.first()


        // Natural spline
        CubicInterpolation f = new CubicInterpolation(
                generic_x, generic_y,
                CubicInterpolation.DerivativeApprox.Spline, false,
                CubicInterpolation.BoundaryCondition.SecondDerivative, generic_natural_y2.first(),
                CubicInterpolation.BoundaryCondition.SecondDerivative, generic_natural_y2.last());
        f.update();

        checkValues("Natural spline", f, generic_x, generic_y);
        // cached second derivative
View Full Code Here


        // Natural spline
        CubicInterpolation f = new CubicInterpolation(
                generic_x, generic_y,
                CubicInterpolation.DerivativeApprox.Spline, false,
                CubicInterpolation.BoundaryCondition.SecondDerivative, generic_natural_y2.first(),
                CubicInterpolation.BoundaryCondition.SecondDerivative, generic_natural_y2.last());
        f.update();

        checkValues("Natural spline", f, generic_x, generic_y);
        // cached second derivative
View Full Code Here

        System.out.println("The stdDeviation of the process after time = 18th day from today with value of the stock as specified from the quote");

        //Calulating the expected value of the stock quote after time = 18th day from today with the current value of the stock as specified from the quote
        //The expectedValue = intialValue*exp(drift*dt)-----can be obtained by integrating----->dx/x= drift*dt
        final Array expectation = process.expectation(process.time(date18.clone()), new Array(1).fill(5.6), 0.01);
        System.out.println("Expected value = "+expectation.first());

        //Calulating the exact value of the stock quote after time = 18th day from today with the current value of the stock as specified from the quote
        //The exact value = intialValue*exp(drift*dt)*exp(volatility*sqrt(dt))-----can be obtained by integrating----->dx/x= drift*dt+volatility*sqrt(dt)
        final Array evolve = process.evolve(process.time(date18.clone()), new Array(1).fill(6.7), .001, new Array(1).fill(new NormalDistribution().op(Math.random()) ));
        System.out.println("Exact value = "+evolve.first());
View Full Code Here

        System.out.println("Expected value = "+expectation.first());

        //Calulating the exact value of the stock quote after time = 18th day from today with the current value of the stock as specified from the quote
        //The exact value = intialValue*exp(drift*dt)*exp(volatility*sqrt(dt))-----can be obtained by integrating----->dx/x= drift*dt+volatility*sqrt(dt)
        final Array evolve = process.evolve(process.time(date18.clone()), new Array(1).fill(6.7), .001, new Array(1).fill(new NormalDistribution().op(Math.random()) ));
        System.out.println("Exact value = "+evolve.first());

        //Calculating covariance of the process
        final Matrix covariance = process.covariance(process.time(date18.clone())new Array(1).fill(5.6), 0.01);
        System.out.println("Covariance = "+covariance.get(0, 0));

View Full Code Here

        double I = 0;
        for(int i = 0; i < f2.size(); i++)
            I += f2.get(i);

        //not sure about this...
        I -= 0.5 * f2.first();
        I -= 0.5 * f2.last();
        I *= h;

        return Math.sqrt(I);
    }
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.