Package de.jungblut.math

Examples of de.jungblut.math.DoubleVector.slice()


    DoubleVector lastOutput = input;
    for (int i = 0; i < layerSizes.length; i++) {
      lastOutput = computeHiddenActivations(lastOutput, weights[i]);
    }
    // slice the hidden bias away
    return lastOutput.slice(1, lastOutput.getDimension());
  }

  /**
   * Creates a reconstruction of the input using the given hidden activations.
   * (That, what is returned by {@link #predict(DoubleVector)}).
View Full Code Here


    DoubleVector lastOutput = hiddenActivations;
    for (int i = weights.length - 1; i >= 0; i--) {
      lastOutput = computeHiddenActivations(lastOutput, weights[i].transpose());
    }
    // slice the hidden bias away
    return lastOutput.slice(1, lastOutput.getDimension());
  }

  /**
   * @return the weight matrices.
   */
 
View Full Code Here

    DoubleVector[] features = new DoubleVector[list.size()];
    DoubleVector[] outcome = new DoubleVector[list.size()];
    for (int i = 0; i < list.size(); i++) {
      DoubleVector doubleVector = list.get(i);
      features[i] = doubleVector.slice(doubleVector.getLength() - 1);
      outcome[i] = new SingleEntryDoubleVector(doubleVector.get(doubleVector
          .getLength() - 1));
    }

    return new Dataset(features, outcome);
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.