* @return value of the fitted parameters
*/
public LeastSquareResults solve(final DoubleMatrix1D observedValues, final DoubleMatrix1D sigma, final Function1D<DoubleMatrix1D, DoubleMatrix1D> func, final DoubleMatrix1D startPos,
final DoubleMatrix2D penalty, final Function1D<DoubleMatrix1D, Boolean> allowedValue) {
final VectorFieldFirstOrderDifferentiator jac = new VectorFieldFirstOrderDifferentiator();
return solve(observedValues, sigma, func, jac.differentiate(func), startPos, penalty, allowedValue);
}
/**
* Use this when the model is given as a function of its parameters only (i.e. a function that takes a set of parameters and return a set of model values,
* so the measurement points are already known to the function), and analytic parameter sensitivity is available