Package com.github.neuralnetworks.training.rbm

Examples of com.github.neuralnetworks.training.rbm.AparapiCDTrainer.addEventListener()


  // Contrastive divergence training
  AparapiCDTrainer t = TrainerFactory.cdSigmoidTrainer(rbm, trainInputProvider, testInputProvider, error, new NNRandomInitializer(new MersenneTwisterRandomInitializer(-0.01f, 0.01f)), 0.02f, 0.5f, 0f, 0f, 1, false);
  t.setLayerCalculator(NNFactory.rbmSigmoidSigmoid(rbm));

  // log data
  t.addEventListener(new LogTrainingListener(Thread.currentThread().getStackTrace()[1].getMethodName(), true, false));

  // training
  t.train();

  // testing
View Full Code Here


  // Persistent Contrastive divergence trainer
  AparapiCDTrainer t = TrainerFactory.cdSigmoidTrainer(rbm, trainInputProvider, testInputProvider, error, new NNRandomInitializer(new MersenneTwisterRandomInitializer(-0.01f, 0.01f)), 0.02f, 0.5f, 0f, 0f, 1, true);
  t.setLayerCalculator(NNFactory.rbmSigmoidSigmoid(rbm));

  // log data
  t.addEventListener(new LogTrainingListener(Thread.currentThread().getStackTrace()[1].getMethodName(), true, false));

  Environment.getInstance().setExecutionMode(EXECUTION_MODE.SEQ);

  // training
  t.train();
View Full Code Here

  // trainers
  AparapiCDTrainer t = TrainerFactory.cdSigmoidTrainer(rbm, trainInputProvider, testInputProvider, error, new NNRandomInitializer(new MersenneTwisterRandomInitializer(-0.01f, 0.01f)), 0.01f, 0.5f, 0f, 0f, 1, true);

  // log data
  t.addEventListener(new LogTrainingListener(Thread.currentThread().getStackTrace()[1].getMethodName()));

  // execution mode
  Environment.getInstance().setExecutionMode(EXECUTION_MODE.SEQ);

  // training
View Full Code Here

  MnistInputProvider testInputProvider = new MnistInputProvider("t10k-images.idx3-ubyte", "t10k-labels.idx1-ubyte", 1000, 1, new MnistTargetMultiNeuronOutputConverter());
  testInputProvider.addInputModifier(new ScalingInputFunction(255));

  AparapiCDTrainer t = TrainerFactory.cdSigmoidTrainer(rbm, trainInputProvider, testInputProvider,  new MultipleNeuronsOutputError(), new NNRandomInitializer(new MersenneTwisterRandomInitializer(-0.01f, 0.01f)), 0.01f, 0.5f, 0f, 0f, 1, false);

  t.addEventListener(new LogTrainingListener(Thread.currentThread().getStackTrace()[1].getMethodName(), false, true));
  Environment.getInstance().setExecutionMode(EXECUTION_MODE.CPU);
  t.train();
  t.test();

  assertEquals(0, t.getOutputError().getTotalNetworkError(), 0.1);
View Full Code Here

  // trainers
  AparapiCDTrainer t = TrainerFactory.cdSigmoidBinaryTrainer(rbm, trainInputProvider, testInputProvider, error, new NNRandomInitializer(new MersenneTwisterRandomInitializer(-0.01f, 0.01f)), 0.01f, 0.5f, 0f, 0f, 1, 1, 100, true);

  // log data
  t.addEventListener(new LogTrainingListener(Thread.currentThread().getStackTrace()[1].getMethodName()));

  // training
  t.train();

  // training
View Full Code Here

  // Contrastive divergence training
  AparapiCDTrainer t = TrainerFactory.cdSigmoidTrainer(rbm, trainInputProvider, testInputProvider, error, new NNRandomInitializer(new MersenneTwisterRandomInitializer(-0.01f, 0.01f)), 0.02f, 0.5f, 0f, 0f, 1, 1, 100, false);

  // log data
  t.addEventListener(new LogTrainingListener(Thread.currentThread().getStackTrace()[1].getMethodName(), true, false));

  // training
  t.train();

  // testing
View Full Code Here

  // Persistent Contrastive divergence trainer
  AparapiCDTrainer t = TrainerFactory.cdSigmoidTrainer(rbm, trainInputProvider, testInputProvider, error, new NNRandomInitializer(new MersenneTwisterRandomInitializer(-0.01f, 0.01f)), 0.02f, 0.5f, 0f, 0f, 1, 1, 100, true);

  // log data
  t.addEventListener(new LogTrainingListener(Thread.currentThread().getStackTrace()[1].getMethodName(), true, false));

  // training
  t.train();

  // testing
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.