Package weka.filters.unsupervised.attribute

Examples of weka.filters.unsupervised.attribute.Standardize


    else {
      m_NominalToBinary = null;
    }

    if (m_filterType == FILTER_STANDARDIZE) {
      m_Filter = new Standardize();
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    } else if (m_filterType == FILTER_NORMALIZE) {
      m_Filter = new Normalize();
      m_Filter.setInputFormat(insts);
View Full Code Here


    }
    double y1 = instances.instance(index).classValue();
   
    // apply filters
    if (m_filterType == FILTER_STANDARDIZE) {
      m_Filter = new Standardize();
      ((Standardize)m_Filter).setIgnoreClass(true);
      m_Filter.setInputFormat(instances);
      instances = Filter.useFilter(instances, m_Filter);     
    } else if (m_filterType == FILTER_NORMALIZE) {
      m_Filter = new Normalize();
View Full Code Here

    ((Center) m_Filter).setIgnoreClass(true);
          break;
  case PREPROCESSING_STANDARDIZE:
    m_ClassMean   = instances.meanOrMode(instances.classIndex());
    m_ClassStdDev = StrictMath.sqrt(instances.variance(instances.classIndex()));
    m_Filter      = new Standardize();
    ((Standardize) m_Filter).setIgnoreClass(true);
          break;
  default:
      m_ClassMean   = 0;
    m_ClassStdDev = 1;
View Full Code Here

    else {
      m_NominalToBinary = null;
    }

    if (m_filterType == FILTER_STANDARDIZE)
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;
View Full Code Here

    m_ConvertToProp.setInputFormat(train);
    train = Filter.useFilter( train, m_ConvertToProp);
    train.deleteAttributeAt(0); //remove the bagIndex attribute;

    if (m_filterType == FILTER_STANDARDIZE
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;
View Full Code Here

        }
      }
    }
   
    // now standardize the input data
    m_standardizeFilter = new Standardize();
    m_standardizeFilter.setInputFormat(m_trainInstances);
    m_trainInstances = Filter.useFilter(m_trainInstances, m_standardizeFilter);
  }
View Full Code Here

      }
    }

    /* filter the training data */
    if (m_filterType == FILTER_STANDARDIZE
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;

View Full Code Here

    }

    /* filter the training data */
    if (m_filterType == FILTER_STANDARDIZE
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;

View Full Code Here

    // convert the training dataset into single-instance dataset
    m_ConvertToSI.setInputFormat(train)
    train = Filter.useFilter( train, m_ConvertToSI);

    if (m_filterType == FILTER_STANDARDIZE)
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;
View Full Code Here

    }


    /* filter the training data */
    if (m_filterType == FILTER_STANDARDIZE
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;

View Full Code Here

TOP

Related Classes of weka.filters.unsupervised.attribute.Standardize

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.