Package weka.filters.unsupervised.attribute

Examples of weka.filters.unsupervised.attribute.RemoveUseless


    m_ReplaceMissingValues = new ReplaceMissingValues();
    m_ReplaceMissingValues.setInputFormat(train);
    train = Filter.useFilter(train, m_ReplaceMissingValues);

    // Remove useless attributes
    m_AttFilter = new RemoveUseless();
    m_AttFilter.setInputFormat(train);
    train = Filter.useFilter(train, m_AttFilter);
 
    // Transform attributes
    m_NominalToBinary = new NominalToBinary();
View Full Code Here


    }
    else {
      random = new Random(m_Seed);
    }

    m_RemoveUseless = new RemoveUseless();
    m_RemoveUseless.setInputFormat(data);
    data = Filter.useFilter(data, m_RemoveUseless);

    m_Normalize = new Normalize();
    m_Normalize.setInputFormat(data);
View Full Code Here

    m_nominalToBinary = new NominalToBinary();
    m_nominalToBinary.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_nominalToBinary);

    m_removeUseless = new RemoveUseless();
    m_removeUseless.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_removeUseless);
   
    m_instances.randomize(new Random(1));
View Full Code Here

    m_ReplaceMissingValues = new ReplaceMissingValues();
    m_ReplaceMissingValues.setInputFormat(train);
    train = Filter.useFilter(train, m_ReplaceMissingValues);

    // Remove useless attributes
    m_AttFilter = new RemoveUseless();
    m_AttFilter.setInputFormat(train);
    train = Filter.useFilter(train, m_AttFilter);
 
    // Transform attributes
    m_NominalToBinary = new NominalToBinary();
View Full Code Here

    m_nominalToBinary = new NominalToBinary();
    m_nominalToBinary.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_nominalToBinary);

    m_removeUseless = new RemoveUseless();
    m_removeUseless.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_removeUseless);
   
    m_instances.randomize(new Random(1));
View Full Code Here

    public void removeUselessFilter(String variance) throws Exception {
        if (_logger.isDebugEnabled()) {
            _logger.debug("Applying remove useless filter");
        }
        // Might employ filtered classifier for production
        RemoveUseless ru = new RemoveUseless();
        String[] options = new String[2];
        options[0] = "-M";
        options[1] = variance;
        ru.setOptions(options);
        ru.setInputFormat(_instances);
        _instances = Filter.useFilter(_instances, ru);
    }
View Full Code Here

    m_ReplaceMissingValues = new ReplaceMissingValues();
    m_ReplaceMissingValues.setInputFormat(train);
    train = Filter.useFilter(train, m_ReplaceMissingValues);

    // Remove useless attributes
    m_AttFilter = new RemoveUseless();
    m_AttFilter.setInputFormat(train);
    train = Filter.useFilter(train, m_AttFilter);
 
    // Transform attributes
    m_NominalToBinary = new NominalToBinary();
View Full Code Here

    m_nominalToBinary = new NominalToBinary();
    m_nominalToBinary.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_nominalToBinary);

    m_removeUseless = new RemoveUseless();
    m_removeUseless.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_removeUseless);
   
    m_instances.randomize(new Random(1));
View Full Code Here

TOP

Related Classes of weka.filters.unsupervised.attribute.RemoveUseless

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.