Package weka.filters.unsupervised.attribute

Examples of weka.filters.unsupervised.attribute.NominalToBinary


    m_stopIt = true;
    m_stopped = true;
    m_accepted = false;
    m_numeric = false;
    m_random = null;
    m_nominalToBinaryFilter = new NominalToBinary();
    m_sigmoidUnit = new SigmoidUnit();
    m_linearUnit = new LinearUnit();
    //setting all the options to their defaults. To completely change these
    //defaults they will also need to be changed down the bottom in the
    //setoptions function (the text info in the accompanying functions should
View Full Code Here


    m_instances = new Instances(i);
    m_random = new Random(m_randomSeed);
    m_instances.randomize(m_random);

    if (m_useNomToBin) {
      m_nominalToBinaryFilter = new NominalToBinary();
      m_nominalToBinaryFilter.setInputFormat(m_instances);
      m_instances = Filter.useFilter(m_instances,
             m_nominalToBinaryFilter);
    }
    m_numAttributes = m_instances.numAttributes() - 1;
View Full Code Here

        }
      }
    }

    if (!onlyNumeric) {
      m_NominalToBinary = new NominalToBinary();
      m_NominalToBinary.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_NominalToBinary);
    }
    return insts;
  }
View Full Code Here

    m_Train = new Instances(insts);
   
    m_ReplaceMissingValues = new ReplaceMissingValues();
    m_ReplaceMissingValues.setInputFormat(m_Train);
    m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues);
    m_NominalToBinary = new NominalToBinary();
    m_NominalToBinary.setInputFormat(m_Train);
    m_Train = Filter.useFilter(m_Train, m_NominalToBinary);

    /** Randomize training data */
    if(m_Seed != -1) {
View Full Code Here

  m_ReplaceMissingValues = new ReplaceMissingValues();
  m_ReplaceMissingValues.setInputFormat(data);
  data = Filter.useFilter(data, m_ReplaceMissingValues);
 
  //convert nominal attributes
  m_NominalToBinary = new NominalToBinary();
  m_NominalToBinary.setInputFormat(data);
  data = Filter.useFilter(data, m_NominalToBinary);
 
  //create actual logistic model
  m_boostedModel = new LogisticBase(m_numBoostingIterations, m_useCrossValidation, m_errorOnProbabilities);
View Full Code Here

    }
  }
      }
     
      if (!onlyNumeric) {
  m_NominalToBinary = new NominalToBinary();
  m_NominalToBinary.setInputFormat(insts);
  insts = Filter.useFilter(insts, m_NominalToBinary);
      }
      else {
  m_NominalToBinary = null;
View Full Code Here

    m_AttFilter = new RemoveUseless();
    m_AttFilter.setInputFormat(train);
    train = Filter.useFilter(train, m_AttFilter);
 
    // Transform attributes
    m_NominalToBinary = new NominalToBinary();
    m_NominalToBinary.setInputFormat(train);
    train = Filter.useFilter(train, m_NominalToBinary);
   
    // Save the structure for printing the model
    m_structure = new Instances(train, 0);
View Full Code Here

        }
      }
    }
   
    if (!onlyNumeric) {
      m_nominalToBinary = new NominalToBinary();
      m_nominalToBinary.setInputFormat(data);
      data = Filter.useFilter(data, m_nominalToBinary);
    }
   
    if (!m_dontNormalize && data.numInstances() > 0) {
View Full Code Here

    m_Missing = new ReplaceMissingValues();
    m_Missing.setInputFormat(instances);
    instances = Filter.useFilter(instances, m_Missing);
   
    if (!m_onlyNumeric) {
      m_NominalToBinary = new NominalToBinary();
      m_NominalToBinary.setInputFormat(instances);
      instances = Filter.useFilter(instances, m_NominalToBinary);
    } else {
      m_NominalToBinary = null;
    }
View Full Code Here

    m_Train = new Instances(insts);
    m_ReplaceMissingValues = new ReplaceMissingValues();
    m_ReplaceMissingValues.setInputFormat(m_Train);
    m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues);
   
    m_NominalToBinary = new NominalToBinary();
    m_NominalToBinary.setInputFormat(m_Train);
    m_Train = Filter.useFilter(m_Train, m_NominalToBinary);

    /** Randomize training data */
    m_Train.randomize(new Random(m_Seed));
View Full Code Here

TOP

Related Classes of weka.filters.unsupervised.attribute.NominalToBinary

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.