Package weka.filters.unsupervised.attribute

Examples of weka.filters.unsupervised.attribute.Center


  public PLSFilter() {
    super();
   
    // setup pre-processing
    m_Missing = new ReplaceMissingValues();
    m_Filter  = new Center();
  }
View Full Code Here


     
      switch (m_Preprocessing) {
  case PREPROCESSING_CENTER:
    m_ClassMean   = instances.meanOrMode(instances.classIndex());
    m_ClassStdDev = 1;
    m_Filter      = new Center();
    ((Center) m_Filter).setIgnoreClass(true);
          break;
  case PREPROCESSING_STANDARDIZE:
    m_ClassMean   = instances.meanOrMode(instances.classIndex());
    m_ClassStdDev = StrictMath.sqrt(instances.variance(instances.classIndex()));
View Full Code Here

    }
   
    double[] att = new double[m_trainInstances.numInstances()];
   
    // now center the data by subtracting the mean
    m_centerFilter = new Center();
    m_centerFilter.setInputFormat(m_trainInstances);
    m_trainInstances = Filter.useFilter(m_trainInstances, m_centerFilter);
   
    // now compute the covariance matrix
    m_correlation = new double[m_numAttribs][m_numAttribs];
View Full Code Here

  public Filter getConfiguredFilterVariant() {
    MultiFilter result = new MultiFilter();
   
    Filter[] filters = new Filter[2];
    filters[0] = new ReplaceMissingValues();
    filters[1] = new Center();
   
    result.setFilters(filters);
   
    return result;
  }
View Full Code Here

  public PLSFilter() {
    super();
   
    // setup pre-processing
    m_Missing = new ReplaceMissingValues();
    m_Filter  = new Center();
  }
View Full Code Here

     
      switch (m_Preprocessing) {
  case PREPROCESSING_CENTER:
    m_ClassMean   = instances.meanOrMode(instances.classIndex());
    m_ClassStdDev = 1;
    m_Filter      = new Center();
    ((Center) m_Filter).setIgnoreClass(true);
          break;
  case PREPROCESSING_STANDARDIZE:
    m_ClassMean   = instances.meanOrMode(instances.classIndex());
    m_ClassStdDev = StrictMath.sqrt(instances.variance(instances.classIndex()));
View Full Code Here

    public void centerFilter() throws Exception {
        if (_logger.isDebugEnabled()) {
            _logger.debug("Applying centering filter");
        }
        // Might employ filtered classifier for production
        Center ct = new Center();
        ct.setInputFormat(_instances);
        _instances = Filter.useFilter(_instances, ct);
    }
View Full Code Here

    }
   
    double[] att = new double[m_trainInstances.numInstances()];
   
    // now center the data by subtracting the mean
    m_centerFilter = new Center();
    m_centerFilter.setInputFormat(m_trainInstances);
    m_trainInstances = Filter.useFilter(m_trainInstances, m_centerFilter);
   
    // now compute the covariance matrix
    m_correlation = new double[m_numAttribs][m_numAttribs];
View Full Code Here

TOP

Related Classes of weka.filters.unsupervised.attribute.Center

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.