Cluster data using the FarthestFirst algorithm.
For more information see:
Hochbaum, Shmoys (1985). A best possible heuristic for the k-center problem. Mathematics of Operations Research. 10(2):180-184.
Sanjoy Dasgupta: Performance Guarantees for Hierarchical Clustering. In: 15th Annual Conference on Computational Learning Theory, 351-363, 2002.
Notes:
- works as a fast simple approximate clusterer
- modelled after SimpleKMeans, might be a useful initializer for it
BibTeX:
@article{Hochbaum1985, author = {Hochbaum and Shmoys}, journal = {Mathematics of Operations Research}, number = {2}, pages = {180-184}, title = {A best possible heuristic for the k-center problem}, volume = {10}, year = {1985} } @inproceedings{Dasgupta2002, author = {Sanjoy Dasgupta}, booktitle = {15th Annual Conference on Computational Learning Theory}, pages = {351-363}, publisher = {Springer}, title = {Performance Guarantees for Hierarchical Clustering}, year = {2002} }
Valid options are:
-N <num> number of clusters. (default = 2).
-S <num> Random number seed. (default 1)
@author Bernhard Pfahringer (bernhard@cs.waikato.ac.nz)
@version $Revision: 5538 $
@see RandomizableClusterer