Package weka.classifiers.trees.lmt

Examples of weka.classifiers.trees.lmt.LogisticBase


  m_NominalToBinary = new NominalToBinary();
  m_NominalToBinary.setInputFormat(data);
  data = Filter.useFilter(data, m_NominalToBinary);
 
  //create actual logistic model
  m_boostedModel = new LogisticBase(m_numBoostingIterations, m_useCrossValidation, m_errorOnProbabilities);
  m_boostedModel.setMaxIterations(m_maxBoostingIterations);
  m_boostedModel.setHeuristicStop(m_heuristicStop);
        m_boostedModel.setWeightTrimBeta(m_weightTrimBeta);
        m_boostedModel.setUseAIC(m_useAIC);
 
View Full Code Here


  m_NominalToBinary = new NominalToBinary();
  m_NominalToBinary.setInputFormat(data);
  data = Filter.useFilter(data, m_NominalToBinary);
 
  //create actual logistic model
  m_boostedModel = new LogisticBase(m_numBoostingIterations, m_useCrossValidation, m_errorOnProbabilities);
  m_boostedModel.setMaxIterations(m_maxBoostingIterations);
  m_boostedModel.setHeuristicStop(m_heuristicStop);
        m_boostedModel.setWeightTrimBeta(m_weightTrimBeta);
        m_boostedModel.setUseAIC(m_useAIC);
 
View Full Code Here

  m_NominalToBinary = new NominalToBinary();
  m_NominalToBinary.setInputFormat(data);
  data = Filter.useFilter(data, m_NominalToBinary);
 
  //create actual logistic model
  m_boostedModel = new LogisticBase(m_numBoostingIterations, m_useCrossValidation, m_errorOnProbabilities);
  m_boostedModel.setMaxIterations(m_maxBoostingIterations);
  m_boostedModel.setHeuristicStop(m_heuristicStop);
        m_boostedModel.setWeightTrimBeta(m_weightTrimBeta);
        m_boostedModel.setUseAIC(m_useAIC);
 
View Full Code Here

TOP

Related Classes of weka.classifiers.trees.lmt.LogisticBase

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.