Class for bagging a classifier to reduce variance. Can do classification and regression depending on the base learner.
For more information, see
Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140.
BibTeX:
@article{Breiman1996, author = {Leo Breiman}, journal = {Machine Learning}, number = {2}, pages = {123-140}, title = {Bagging predictors}, volume = {24}, year = {1996} }
Valid options are:
-P Size of each bag, as a percentage of the training set size. (default 100)
-O Calculate the out of bag error.
-S <num> Random number seed. (default 1)
-I <num> Number of iterations. (default 10)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.trees.REPTree)
Options specific to classifier weka.classifiers.trees.REPTree:
-M <minimum number of instances> Set minimum number of instances per leaf (default 2).
-V <minimum variance for split> Set minimum numeric class variance proportion of train variance for split (default 1e-3).
-N <number of folds> Number of folds for reduced error pruning (default 3).
-S <seed> Seed for random data shuffling (default 1).
-P No pruning.
-L Maximum tree depth (default -1, no maximum)
Options after -- are passed to the designated classifier.
@author Eibe Frank (eibe@cs.waikato.ac.nz)
@author Len Trigg (len@reeltwo.com)
@author Richard Kirkby (rkirkby@cs.waikato.ac.nz)
@version $Revision: 6502 $