Class for examining the capabilities and finding problems with classifiers. If you implement a classifier using the WEKA.libraries, you should run the checks on it to ensure robustness and correct operation. Passing all the tests of this object does not mean bugs in the classifier don't exist, but this will help find some common ones.
Typical usage:
java weka.classifiers.CheckClassifier -W classifier_name classifier_options
CheckClassifier reports on the following:
- Classifier abilities
- Possible command line options to the classifier
- Whether the classifier can predict nominal, numeric, string, date or relational class attributes. Warnings will be displayed if performance is worse than ZeroR
- Whether the classifier can be trained incrementally
- Whether the classifier can handle numeric predictor attributes
- Whether the classifier can handle nominal predictor attributes
- Whether the classifier can handle string predictor attributes
- Whether the classifier can handle date predictor attributes
- Whether the classifier can handle relational predictor attributes
- Whether the classifier can handle multi-instance data
- Whether the classifier can handle missing predictor values
- Whether the classifier can handle missing class values
- Whether a nominal classifier only handles 2 class problems
- Whether the classifier can handle instance weights
- Correct functioning
- Correct initialisation during buildClassifier (i.e. no result changes when buildClassifier called repeatedly)
- Whether incremental training produces the same results as during non-incremental training (which may or may not be OK)
- Whether the classifier alters the data pased to it (number of instances, instance order, instance weights, etc)
- Whether the toString() method works correctly before the classifier has been built.
- Degenerate cases
- building classifier with zero training instances
- all but one predictor attribute values missing
- all predictor attribute values missing
- all but one class values missing
- all class values missing
Running CheckClassifier with the debug option set will output the training and test datasets for any failed tests.
The
weka.classifiers.AbstractClassifierTest
uses this class to test all the classifiers. Any changes here, have to be checked in that abstract test class, too.
Valid options are:
-D Turn on debugging output.
-S Silent mode - prints nothing to stdout.
-N <num> The number of instances in the datasets (default 20).
-nominal <num> The number of nominal attributes (default 2).
-nominal-values <num> The number of values for nominal attributes (default 1).
-numeric <num> The number of numeric attributes (default 1).
-string <num> The number of string attributes (default 1).
-date <num> The number of date attributes (default 1).
-relational <num> The number of relational attributes (default 1).
-num-instances-relational <num> The number of instances in relational/bag attributes (default 10).
-words <comma-separated-list> The words to use in string attributes.
-word-separators <chars> The word separators to use in string attributes.
-W Full name of the classifier analysed. eg: weka.classifiers.bayes.NaiveBayes (default weka.classifiers.rules.ZeroR)
Options specific to classifier weka.classifiers.rules.ZeroR:
-D If set, classifier is run in debug mode and may output additional info to the console
Options after -- are passed to the designated classifier.
@author Len Trigg (trigg@cs.waikato.ac.nz)
@author FracPete (fracpete at waikato dot ac dot nz)
@version $Revision: 1.33 $
@see TestInstances