Package weka.classifiers

Examples of weka.classifiers.AggregateableEvaluation


          m_PlotInstances.setEvaluation(eval);

          eval = adjustForInputMappedClassifier(eval, ce.getClassifier(),
              ce.getTestSet().getDataSet(), m_PlotInstances);
          eval.useNoPriors();
          m_eval = new AggregateableEvaluation(eval);
        } else {
          // we can set up with the training set here
          Evaluation eval = new Evaluation(ce.getTrainSet().getDataSet());
          m_PlotInstances = ExplorerDefaults.getClassifierErrorsPlotInstances();
          m_PlotInstances.setInstances(ce.getTrainSet().getDataSet());
          m_PlotInstances.setClassifier(ce.getClassifier());
          m_PlotInstances.setClassIndex(ce.getTestSet().getDataSet().classIndex());
          m_PlotInstances.setEvaluation(eval);

          eval = adjustForInputMappedClassifier(eval, ce.getClassifier(),
              ce.getTrainSet().getDataSet(), m_PlotInstances);
          m_eval = new AggregateableEvaluation(eval);
        }

        m_PlotInstances.setUp();

        m_currentBatchIdentifier = ce.getGroupIdentifier();
View Full Code Here


          m_PlotInstances.setEvaluation(eval);

          eval = adjustForInputMappedClassifier(eval, ce.getClassifier(),
              ce.getTestSet().getDataSet(), m_PlotInstances);
          eval.useNoPriors();
          m_eval = new AggregateableEvaluation(eval);
        } else {
          // we can set up with the training set here
          Evaluation eval = new Evaluation(ce.getTrainSet().getDataSet());
          m_PlotInstances = ExplorerDefaults.getClassifierErrorsPlotInstances();
          m_PlotInstances.setInstances(ce.getTrainSet().getDataSet());
          m_PlotInstances.setClassifier(ce.getClassifier());
          m_PlotInstances.setClassIndex(ce.getTestSet().getDataSet().classIndex());
          m_PlotInstances.setEvaluation(eval);

          eval = adjustForInputMappedClassifier(eval, ce.getClassifier(),
              ce.getTrainSet().getDataSet(), m_PlotInstances);
          m_eval = new AggregateableEvaluation(eval);
        }

        m_PlotInstances.setUp();

        m_currentBatchIdentifier = ce.getGroupIdentifier();
View Full Code Here

TOP

Related Classes of weka.classifiers.AggregateableEvaluation

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.