Package tv.floe.metronome.io.records

Examples of tv.floe.metronome.io.records.RCV1RecordFactory


    ParallelOnlineLinearRegression polr = new ParallelOnlineLinearRegression(
        qtf.feature_size, new UniformPrior()).alpha(1)
        .stepOffset(1000).decayExponent(0.9).lambda(3.0e-5)
        .learningRate(qtf.learningRate);
   
    RCV1RecordFactory factory = new RCV1RecordFactory();


    double y_partial_sum = 0;
    double y_bar = 0;
      double SSyy_partial_sum = 0;
      double SSE_partial_sum = 0;
     
     
     
   
    for ( int x = 0; x < qtf.iterations; x++ ) {
     
      RegressionStatistics regStats = new RegressionStatistics();
     
      BufferedReader reader = new BufferedReader(new FileReader(qtf.fileName));
      double error_sum = 0;
      int rec_count = 0;
     
        SSyy_partial_sum = 0;
        SSE_partial_sum = 0;
     
     
      String line = reader.readLine();
      while (line != null && line.length() > 0) {
 
        //System.out.println(line);
 
       
 
        if (null == line || line.trim().equals("")) {
         
        } else {
         
          rec_count++;
 
          Vector vec = new RandomAccessSparseVector(qtf.feature_size);
         
           
            double actual = factory.processLineAlt(line, vec);

            // we're only looking at the first row or the matrix because
            // the original code was for multinomial log regression
            // but here we only need a single parameter vector
            double hypothesis_value = polr.getBeta().viewRow(0).dot(vec);
           
            double error = Math.abs( hypothesis_value - actual ); // SquaredErrorLossFunction.Calc(hypothesis_value, actual);
            error_sum += error;

          polr.train(actual, vec);

            // now calc Regression Stats stuff ----
           
            if ( x == 0 ) {
             
              // calc the avg stuff
              y_partial_sum += actual;
             
            } else {
             
              // calc the ongoing r-squared
              SSyy_partial_sum += Math.pow( (actual - y_bar), 2 );
             
              SSE_partial_sum += Math.pow( (actual - hypothesis_value), 2 );
             
             
            }

        } // if
       
        line = reader.readLine();

      } // while
     
      System.out.println("> " + x + " Avg Err: " + ( error_sum / (rec_count) ) );

      // setup the avg'd y-bar data
        if ( x == 0 ) {
         
          System.out.println( "y-sum: " + y_partial_sum + ", rec-count: " + rec_count );
         
          regStats.AddPartialSumForY(y_partial_sum, rec_count);
          y_bar = regStats.ComputeYAvg();
         
          System.out.println( "y-bar: " + y_bar );
         
        } else {
         
        regStats.AccumulateSSEPartialSum(SSE_partial_sum);
        regStats.AccumulateSSyyPartialSum(SSyy_partial_sum);
         
        double r_squared = regStats.CalculateRSquared();
       
        System.out.println( "> " + x + " R-Squared: " + r_squared );
         
         
        }
     
      System.out.println("----------------------- ");     
    } // for
   
        System.out.print( "beta: ");
        Utils.PrintVector(polr.getBeta().viewRow(0));
   
        // now simulate the post-pass ------------------------------------
       
        SSyy_partial_sum = 0;
        SSE_partial_sum = 0;
       
      RegressionStatistics regStats = new RegressionStatistics();
     
      BufferedReader reader = new BufferedReader(new FileReader(qtf.fileName));
       
        String line = reader.readLine();
      while (line != null && line.length() > 0) {

       
        if (null == line || line.trim().equals("")) {
         
        } else {
   
          Vector vec = new RandomAccessSparseVector(qtf.feature_size);
           
            double y_observed = factory.processLineAlt(line, vec);
            double y_predicted = polr.getBeta().viewRow(0).dot(vec);
           
            SSyy_partial_sum += Math.pow( (y_observed - y_bar), 2 );
           
            SSE_partial_sum += Math.pow( (y_observed - y_predicted), 2 );
View Full Code Here


    ParallelOnlineLinearRegression polr = new ParallelOnlineLinearRegression(
        2, new UniformPrior()).alpha(1)
        .stepOffset(1000).decayExponent(0.9).lambda(3.0e-5)
        .learningRate(17);
   
    RCV1RecordFactory factory = new RCV1RecordFactory();
   
   
    RegressionStatistics regStats = new RegressionStatistics();
   
    BufferedReader reader = new BufferedReader(new FileReader(file_name));
    double error_sum = 0;
    int rec_count = 0;
   
    double y_partial_sum = 0;
   
    String line = reader.readLine();
    while (line != null && line.length() > 0) {

     
      if (null == line || line.trim().equals("")) {
       
      } else {

        System.out.println( "> " + line  );
 
        Vector vec = new RandomAccessSparseVector(2);
       
         
          double y_observed = factory.processLineAlt(line, vec);
       
          System.out.println( "Parsed: y:" + y_observed + ", x: " + vec.get(1) + "\n" );
         
          y_partial_sum += y_observed;
          rec_count++;
         
       
      } // if
     
     
      line = reader.readLine();
     
     
    } // while
   
    assertEquals( y_partial_sum, 11850, 0.0 );
    assertEquals( rec_count, 20 );
   
      regStats.AddPartialSumForY(y_partial_sum, rec_count);
   
      double y_bar = regStats.ComputeYAvg();
     
      assertEquals( y_bar, 592.5, 0.0 );
     
     
      // do the learning pass ------------------------------------------
     
      reader.close();

    for ( int x = 0; x < 3000; x++ ) {
     
     
      reader = new BufferedReader(new FileReader(file_name));
      error_sum = 0;
      rec_count = 0;
     
      line = reader.readLine();
      while (line != null && line.length() > 0) {
 
        //System.out.println(line);
 
       
 
        if (null == line || line.trim().equals("")) {
         
        } else {
         
          rec_count++;
 
          Vector vec = new RandomAccessSparseVector(2);
         
           
            double actual = factory.processLineAlt(line, vec);

            //Utils.PrintVector(vec);
         
            // we're only looking at the first row or the matrix because
            // the original code was for multinomial log regression
            // but here we only need a single parameter vector
            double hypothesis_value = polr.getBeta().viewRow(0).dot(vec);
           
            double error = Math.abs( hypothesis_value - actual ); // SquaredErrorLossFunction.Calc(hypothesis_value, actual);
            error_sum += error;
           
            polr.train(actual, vec);

        }
       
        line = reader.readLine();

      } // while
     
      //" + error_sum + " / " + rec_count + " =
      System.out.println("> " + x + " Avg Err: " + ( error_sum / (rec_count) ) );
     
      // reader.reset();
      System.out.println("----------------------- ");     
    } // for
   
        System.out.print( "beta: ");
        Utils.PrintVector(polr.getBeta().viewRow(0));     
     
        reader.close();
     
      // now simulate the post-pass ------------------------------------
     
      double SSyy_partial_sum = 0;
      double SSE_partial_sum = 0;
     
      reader = new BufferedReader(new FileReader(file_name));
     
      line = reader.readLine();
    while (line != null && line.length() > 0) {

     
      if (null == line || line.trim().equals("")) {
       
      } else {

        Vector vec = new RandomAccessSparseVector(2);
       
         
          double y_observed = factory.processLineAlt(line, vec);
          double y_predicted = polr.getBeta().viewRow(0).dot(vec);
       
         
          SSyy_partial_sum += Math.pow( (y_observed - y_bar), 2 );
         
View Full Code Here

          .equals(this.RecordFactoryClassname)) {
               
      } else if (RecordFactory.RCV1_RECORDFACTORY
          .equals(this.RecordFactoryClassname)) {
       
        this.VectorFactory = new RCV1RecordFactory();
       
      } else {
       
        // need to rethink this
/*       
View Full Code Here

        .equals(this.RecordFactoryClassname)) {

    } else if (RecordFactory.RCV1_RECORDFACTORY
        .equals(this.RecordFactoryClassname)) {

      this.VectorFactory = new RCV1RecordFactory();

    } else {

      // it defaults to the CSV record factor, but a custom one
/*
 
View Full Code Here

//      this.VectorFactory = new TwentyNewsgroupsRecordFactory("\t");

    } else if (RecordFactory.RCV1_RECORDFACTORY
        .equals(this.RecordFactoryClassname)) {

      this.VectorFactory = new RCV1RecordFactory();

    } else {

      // it defaults to the CSV record factor, but a custom one
/*
 
View Full Code Here

     
    } else */
    if (RecordFactory.RCV1_RECORDFACTORY
        .equals(this.RecordFactoryClassname)) {
     
      this.VectorFactory = new RCV1RecordFactory();
     
    } else {
     
      // need to rethink this
    /* 
View Full Code Here

   
   
    if (RecordFactory.RCV1_RECORDFACTORY
        .equals(this.RecordFactoryClassname)) {
     
      this.VectorFactory = new RCV1RecordFactory();
     
    } else {
     
      // it defaults to the CSV record factor, but a custom one
/*     
View Full Code Here

TOP

Related Classes of tv.floe.metronome.io.records.RCV1RecordFactory

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.