Package tv.floe.metronome.deeplearning.neuralnetwork.gradient

Examples of tv.floe.metronome.deeplearning.neuralnetwork.gradient.LogisticRegressionGradient


  }

  @Override
  public void getValueGradient(double[] buffer) {
   
    LogisticRegressionGradient grad = logReg.getGradient( lr );
   
    for (int i = 0; i < buffer.length; i++) {
   
      if ( i < MatrixUtils.length( logReg.connectionWeights )) {
       
        buffer[ i ] = MatrixUtils.getElement( grad.getwGradient(), i );
       
      } else {
       
        buffer[ i ] = MatrixUtils.getElement( grad.getbGradient(), i - MatrixUtils.length( logReg.connectionWeights ) );
       
      }
     
    }
   
View Full Code Here


  }

  @Override
  public Matrix getValueGradient() {
   
    LogisticRegressionGradient grad = logReg.getGradient( lr );
    Matrix ret = new DenseMatrix( 1, getNumParameters() );
   
    for (int i = 0; i < MatrixUtils.length( ret ); i++) {
     
      if ( i < MatrixUtils.length( logReg.connectionWeights  ) ) {
       
        MatrixUtils.setElement( ret, i, MatrixUtils.getElement( grad.getwGradient(), i ) );
       
      } else {
       
        MatrixUtils.setElement( ret, i, MatrixUtils.getElement( grad.getbGradient(), i - MatrixUtils.length( logReg.connectionWeights ) ) );
       
      }
     
    }
    return ret;
View Full Code Here

        if (params.length >= 2) {
            lr = (Double) params[1];
        }

        this.feedForward();
        LogisticRegressionGradient g2 = this.logisticRegressionLayer.getGradient(lr);


        MultiLayerGradient ret =  new MultiLayerGradient(gradient,g2);
/*
    if(multiLayerGradientListeners != null && !multiLayerGradientListeners.isEmpty()) {
View Full Code Here

    }

    this.input = x;
    this.labels = y;

    LogisticRegressionGradient gradient = getGradient(lr);

    //W.addi(gradient.getwGradient());
    this.connectionWeights = this.connectionWeights.plus(gradient.getwGradient());
   
    //b.addi(gradient.getbGradient());
    this.biasTerms = this.biasTerms.plus(gradient.getbGradient());

  }
View Full Code Here

     
    }
   
    Matrix bGradient = dy;
   
    return new LogisticRegressionGradient( wGradient, bGradient );
   
   
  }
View Full Code Here

TOP

Related Classes of tv.floe.metronome.deeplearning.neuralnetwork.gradient.LogisticRegressionGradient

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.