Package statechum.analysis.learning.rpnicore.RandomPathGenerator

Examples of statechum.analysis.learning.rpnicore.RandomPathGenerator.RandomLengthGenerator


        // The total number of elements in test sequences (alphabet*states*traceQuantity) will be distributed around (random(pathLength)+1). The total size of PTA is a product of these two.
        // For the purpose of generating long traces, we construct as many traces as there are states but these traces have to be rather long,
        // that is, length of traces will be (random(pathLength)+1)*sequencesPerChunk/states and the number of traces generated will be the same as the number of states.
        final int tracesToGenerate = makeEven(traceQuantity);
        final Random rnd = new Random(seed*31+attempt);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return 2*states*alphabet;//(rnd.nextInt(pathLength)+1)*lengthMultiplier;
            }
 
View Full Code Here


      for(int attempt=0;attempt<2;++attempt)
      {// try learning the same machine a few times
        LearnerGraph pta = new LearnerGraph(config);
        RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,null);
        final int tracesToGenerate = makeEven(traceQuantity);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (int)(traceLengthMultiplier*states*tracesAlphabet);
            }
 
View Full Code Here

      for(int attempt=0;attempt<2;++attempt)
      {// try learning the same machine a few times
        LearnerGraph pta = new LearnerGraph(config);
        RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,null);
        final int tracesToGenerate = makeEven(traceQuantity);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (int)(traceLengthMultiplier*states*alphabet);
            }
 
View Full Code Here

        // The total number of elements in test sequences (alphabet*states*traceQuantity) will be distributed around (random(pathLength)+1). The total size of PTA is a product of these two.
        // For the purpose of generating long traces, we construct as many traces as there are states but these traces have to be rather long,
        // that is, length of traces will be (random(pathLength)+1)*sequencesPerChunk/states and the number of traces generated will be the same as the number of states.
        final int tracesToGenerate = makeEven(states*traceQuantity);
        final Random rnd = new Random(seed*31+attempt);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (rnd.nextInt(pathLength)+1)*lengthMultiplier;
            }
 
View Full Code Here

        // The total number of elements in test sequences (alphabet*states*traceQuantity) will be distributed around (random(pathLength)+1). The total size of PTA is a product of these two.
        // For the purpose of generating long traces, we construct as many traces as there are states but these traces have to be rather long,
        // that is, length of traces will be (random(pathLength)+1)*sequencesPerChunk/states and the number of traces generated will be the same as the number of states.
        final int tracesToGenerate = makeEven(states*traceQuantity);
        final Random rnd = new Random(seed*31+attempt);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (rnd.nextInt(pathLength)+1)*lengthMultiplier;
            }
 
View Full Code Here

        // The total number of elements in test sequences (alphabet*states*traceQuantity) will be distributed around (random(pathLength)+1). The total size of PTA is a product of these two.
        // For the purpose of generating long traces, we construct as many traces as there are states but these traces have to be rather long,
        // that is, length of traces will be (random(pathLength)+1)*sequencesPerChunk/states and the number of traces generated will be the same as the number of states.
        final int tracesToGenerate = makeEven(traceQuantity);
        final Random rnd = new Random(seed*31+attempt);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (rnd.nextInt(pathLength)+1)*lengthMultiplier;
            }
 
View Full Code Here

        // The total number of elements in test sequences (alphabet*states*traceQuantity) will be distributed around (random(pathLength)+1). The total size of PTA is a product of these two.
        // For the purpose of generating long traces, we construct as many traces as there are states but these traces have to be rather long,
        // that is, length of traces will be (random(pathLength)+1)*sequencesPerChunk/states and the number of traces generated will be the same as the number of states.
        final int tracesToGenerate = makeEven(states*traceQuantity);
        final Random rnd = new Random(seed*31+attempt);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (rnd.nextInt(pathLength)+1)*lengthMultiplier;
            }
 
View Full Code Here

        // The total number of elements in test sequences (alphabet*states*traceQuantity) will be distributed around (random(pathLength)+1). The total size of PTA is a product of these two.
        // For the purpose of generating long traces, we construct as many traces as there are states but these traces have to be rather long,
        // that is, length of traces will be (random(pathLength)+1)*sequencesPerChunk/states and the number of traces generated will be the same as the number of states.
        final int tracesToGenerate = makeEven(states*traceQuantity);
        final Random rnd = new Random(seed*31+attempt);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (rnd.nextInt(pathLength)+1)*lengthMultiplier;
            }
 
View Full Code Here

      // For the purpose of generating long traces, we construct as many traces as there are states but these traces have to be rather long,
      // that is, length of traces will be (random(pathLength)+1)*sequencesPerChunk/states and the number of traces generated will be the same as the number of states.
      final int tracesToGenerate = 20;//PairQualityLearner.makeEven(states*traceQuantity*3);
      final Random rnd = new Random(seed*31+attempt);
     
      generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                 
          @Override
          public int getLength() {
            return  6;//10*(rnd.nextInt(pathLength)+1)*sequencesPerChunk/tracesToGenerate;
          }
 
View Full Code Here

        // The total number of elements in test sequences (alphabet*states*traceQuantity) will be distributed around (random(pathLength)+1). The total size of PTA is a product of these two.
        // For the purpose of generating long traces, we construct as many traces as there are states but these traces have to be rather long,
        // that is, length of traces will be (random(pathLength)+1)*sequencesPerChunk/states and the number of traces generated will be the same as the number of states.
        final int tracesToGenerate = makeEven(traceQuantity);
        final Random rnd = new Random(seed*31+attempt);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (rnd.nextInt(pathLength)+1)*lengthMultiplier;
            }
 
View Full Code Here

TOP

Related Classes of statechum.analysis.learning.rpnicore.RandomPathGenerator.RandomLengthGenerator

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.