// When a dwell edge has been eliminated, do not alight immediately after boarding.
// Perhaps this should be handled by PathParser.
if (s0.getBackEdge() instanceof TransitBoardAlight) {
return null;
}
StateEditor s1 = s0.edit(this);
s1.setTripId(null);
s1.setLastAlightedTimeSeconds(s0.getTimeSeconds());
// Store the stop we are alighting at, for computing stop-to-stop transfer times,
// preferences, and permissions.
// The vertices in the transfer table are stop arrives/departs, not pattern
// arrives/departs, so previousStop is direction-dependent.
s1.setPreviousStop(getStop());
s1.setLastPattern(this.getPattern());
/* Determine the wait. */
if (arrivalTimeAtStop > 0) { // FIXME what is this arrivalTimeAtStop?
int wait = (int) Math.abs(s0.getTimeSeconds() - arrivalTimeAtStop);
s1.incrementTimeInSeconds(wait);
// this should only occur at the beginning
s1.incrementWeight(wait * options.waitAtBeginningFactor);
s1.setInitialWaitTimeSeconds(wait);
//LOG.debug("Initial wait time set to {} in PatternBoard", wait);
}
// during reverse optimization, board costs should be applied to PatternBoards
// so that comparable trip plans result (comparable to non-optimized plans)
if (options.reverseOptimizing)
s1.incrementWeight(options.getBoardCost(s0.getNonTransitMode()));
if (options.reverseOptimizeOnTheFly) {
TripPattern pattern = getPattern();
int thisDeparture = s0.getTripTimes().getDepartureTime(stopIndex);
int numTrips = getPattern().getNumScheduledTrips();
int nextDeparture;
s1.setLastNextArrivalDelta(Integer.MAX_VALUE);
for (int tripIndex = 0; tripIndex < numTrips; tripIndex++) {
Timetable timetable = pattern.getUpdatedTimetable(options, s0.getServiceDay());
nextDeparture = timetable.getTripTimes(tripIndex).getDepartureTime(stopIndex);
if (nextDeparture > thisDeparture) {
s1.setLastNextArrivalDelta(nextDeparture - thisDeparture);
break;
}
}
}
s1.setBackMode(getMode());
return s1.makeState();
} else {
/* We are going onto transit and must look for a suitable transit trip on this pattern. */
/* Disallow ever re-boarding the same trip pattern. */
if (s0.getLastPattern() == this.getPattern()) {
return null;
}
/* Check this pattern's mode against those allowed in the request. */
if (!options.modes.get(modeMask)) {
return null;
}
/* We assume all trips in a pattern are on the same route. Check if that route is banned. */
if (options.bannedRoutes != null && options.bannedRoutes.matches(getPattern().route)) {
// TODO: remove route checks in/after the trip search
return null;
}
/*
* Find the next boarding/alighting time relative to the current State. Check lists of
* transit serviceIds running yesterday, today, and tomorrow relative to the initial
* state. Choose the closest board/alight time among trips starting yesterday, today, or
* tomorrow. Note that we cannot skip searching on service days that have not started
* yet: Imagine a state at 23:59 Sunday, that should take a bus departing at 00:01
* Monday (and coded on Monday in the GTFS); disallowing Monday's departures would
* produce a strange plan. We also can't break off the search after we find trips today.
* Imagine a trip on a pattern at 25:00 today and another trip on the same pattern at
* 00:30 tommorrow. The 00:30 trip should be taken, but if we stopped the search after
* finding today's 25:00 trip we would never find tomorrow's 00:30 trip.
*/
TripPattern tripPattern = this.getPattern();
int bestWait = -1;
TripTimes bestTripTimes = null;
ServiceDay bestServiceDay = null;
for (ServiceDay sd : rctx.serviceDays) {
/* Find the proper timetable (updated or original) if there is a realtime snapshot. */
Timetable timetable = tripPattern.getUpdatedTimetable(options, sd);
/* Skip this day/timetable if no trip in it could possibly be useful. */
// TODO disabled until frequency representation is stable, and min/max timetable times are set from frequencies
// However, experiments seem to show very little measurable improvement here (due to cache locality?)
// if ( ! timetable.temporallyViable(sd, s0.getTimeSeconds(), bestWait, boarding)) continue;
/* Find the next or prev departure depending on final boolean parameter. */
TripTimes tripTimes = timetable.getNextTrip(s0, sd, stopIndex, boarding);
if (tripTimes != null) {
/* Wait is relative to departures on board and arrivals on alight. */
int wait = boarding ?
(int)(sd.time(tripTimes.getDepartureTime(stopIndex)) - s0.getTimeSeconds()):
(int)(s0.getTimeSeconds() - sd.time(tripTimes.getArrivalTime(stopIndex)));
/* A trip was found. The wait should be non-negative. */
if (wait < 0) LOG.error("Negative wait time when boarding.");
/* Track the soonest departure over all relevant schedules. */
if (bestWait < 0 || wait < bestWait) {
bestWait = wait;
bestServiceDay = sd;
bestTripTimes = tripTimes;
}
}
}
if (bestWait < 0) return null; // no appropriate trip was found
Trip trip = bestTripTimes.trip;
/* check if route and/or Agency are banned for this plan */
// FIXME this should be done WHILE searching for a trip.
if (options.tripIsBanned(trip)) return null;
/* Check if route is preferred by the user. */
long preferences_penalty = options.preferencesPenaltyForRoute(getPattern().route);
/* Compute penalty for non-preferred transfers. */
int transferPenalty = 0;
/* If this is not the first boarding, then we are transferring. */
if (s0.isEverBoarded()) {
TransferTable transferTable = options.getRoutingContext().transferTable;
int transferTime = transferTable.getTransferTime(s0.getPreviousStop(),
getStop(), s0.getPreviousTrip(), trip, boarding);
transferPenalty = transferTable.determineTransferPenalty(transferTime,
options.nonpreferredTransferPenalty);
}
/* Found a trip to board. Now make the child state. */
StateEditor s1 = s0.edit(this);
s1.setBackMode(getMode());
s1.setServiceDay(bestServiceDay);
// Save the trip times in the State to ensure that router has a consistent view
// and constant-time access to them.
s1.setTripTimes(bestTripTimes);
s1.incrementTimeInSeconds(bestWait);
s1.incrementNumBoardings();
s1.setTripId(trip.getId());
s1.setPreviousTrip(trip);
s1.setZone(getPattern().getZone(stopIndex));
s1.setRoute(trip.getRoute().getId());
double wait_cost = bestWait;
if (!s0.isEverBoarded() && !options.reverseOptimizing) {
wait_cost *= options.waitAtBeginningFactor;
s1.setInitialWaitTimeSeconds(bestWait);
} else {
wait_cost *= options.waitReluctance;
}
s1.incrementWeight(preferences_penalty);
s1.incrementWeight(transferPenalty);
// when reverse optimizing, the board cost needs to be applied on
// alight to prevent state domination due to free alights
if (options.reverseOptimizing) {
s1.incrementWeight(wait_cost);
} else {
s1.incrementWeight(wait_cost + options.getBoardCost(s0.getNonTransitMode()));
}
// On-the-fly reverse optimization
// determine if this needs to be reverse-optimized.
// The last alight can be moved forward by bestWait (but no further) without
// impacting the possibility of this trip
if (options.reverseOptimizeOnTheFly &&
!options.reverseOptimizing &&
s0.isEverBoarded() &&
s0.getLastNextArrivalDelta() <= bestWait &&
s0.getLastNextArrivalDelta() > -1) {
// it is re-reversed by optimize, so this still yields a forward tree
State optimized = s1.makeState().optimizeOrReverse(true, true);
if (optimized == null) LOG.error("Null optimized state. This shouldn't happen.");
return optimized;
}
/* If we didn't return an optimized path, return an unoptimized one. */
return s1.makeState();
}
}