Package org.jquantlib.processes

Examples of org.jquantlib.processes.StochasticProcess1D$Discretization1D


        final PlainVanillaPayoff payoff = (PlainVanillaPayoff) a.payoff;
        QL.require(payoff!=null , "non-plain payoff given"); // QA:[RG]::verified // TODO: message

        final double maturity = rfdc.yearFraction(referenceDate, maturityDate);

        final StochasticProcess1D bs = new GeneralizedBlackScholesProcess(process.stateVariable(), flatDividends, flatRiskFree, flatVol);
        final TimeGrid grid = new TimeGrid(maturity, timeSteps_);
        final Tree tree = (Tree)getTreeInstance(bs, maturity, timeSteps_, payoff.strike());

        final BlackScholesLattice<Tree> lattice = new BlackScholesLattice<Tree>(tree, rRate, maturity, timeSteps_);
        final DiscretizedVanillaOption option = new DiscretizedVanillaOption(a, process, grid);
View Full Code Here


        final SimpleQuote riskFreeRateQuote = new SimpleQuote(0.3);
        final RelinkableHandle<Quote>  handleToRiskFreeRateQuote = new RelinkableHandle<Quote>(riskFreeRateQuote);
        final YieldTermStructure riskFreeTermStructure = new FlatForward(2,new UnitedStates(Market.NYSE),handleToRiskFreeRateQuote, new Actual365Fixed(), Compounding.Continuous,Frequency.Daily);

        //Creating the process
        final StochasticProcess1D process = new GeneralizedBlackScholesProcess(handleToStockQuote,new RelinkableHandle<YieldTermStructure>(dividendTermStructure),new RelinkableHandle<YieldTermStructure>(riskFreeTermStructure),new RelinkableHandle<BlackVolTermStructure>(varianceCurve),new EulerDiscretization());

        //Calculating the drift of the stochastic process after time = 18th day from today with value of the stock as specified from the quote
        //The drift = (riskFreeForwardRate - dividendForwardRate) - (Variance/2)
        System.out.println("The drift of the process after time = 18th day from today with value of the stock as specified from the quote = "+process.drift(process.time(date18.clone()), handleToStockQuote.currentLink().value()));

        //Calculating the diffusion of the process after time = 18th day from today with value of the stock as specified from the quote
        //The diffusion = volatiltiy of the stochastic process
        System.out.println("The diffusion of the process after time = 18th day from today with value of the stock as specified from the quote = "+process.diffusion(process.time(date18.clone()), handleToStockQuote.currentLink().value()));

        //Calulating the standard deviation of the process after time = 18th day from today with value of the stock as specified from the quote
        //The standard deviation = volatility*sqrt(dt)
        System.out.println("The stdDeviation of the process after time = 18th day from today with value of the stock as specified from the quote = "+process.stdDeviation(process.time(date18.clone()), handleToStockQuote.currentLink().value(), 0.01));

        //Calulating the variance of the process after time = 18th day from today with value of the stock as specified from the quote
        //The variance = volatility*volatility*dt
        System.out.println("The variance of the process after time = 18th day from today with value of the stock as specified from the quote = "+process.variance(process.time(date18.clone()), handleToStockQuote.currentLink().value(), 0.01));

        //Calulating the expected value of the stock quote after time = 18th day from today with the current value of the stock as specified from the quote
        //The expectedValue = intialValue*exp(drift*dt)-----can be obtained by integrating----->dx/x= drift*dt
        System.out.println("Expected value = "+process.expectation(process.time(date18.clone()), handleToStockQuote.currentLink().value(), 0.01));

        //Calulating the exact value of the stock quote after time = 18th day from today with the current value of the stock as specified from the quote
        //The exact value = intialValue*exp(drift*dt)*exp(volatility*sqrt(dt))-----can be obtained by integrating----->dx/x= drift*dt+volatility*sqrt(dt)
        System.out.println("Exact value = "+process.evolve(process.time(date18.clone()), 6.7, .001, new NormalDistribution().op(Math.random())));

        //Calculating the drift of the stochastic process after time = 18th day from today with value of the stock as specified from the quote
        //The drift = (riskFreeForwardRate - dividendForwardRate) - (Variance/2)
        final Array drift = process.drift(process.time(date18.clone()), new Array(1).fill(5.6));
        System.out.println("The drift of the process after time = 18th day from today with value of the stock as specified from the quote");

        //Calculating the diffusion of the process after time = 18th day from today with value of the stock as specified from the quote
        //The diffusion = volatiltiy of the stochastic process
        final Matrix diffusion = process.diffusion(process.time(date18.clone()), new Array(1).fill(5.6));
        System.out.println("The diffusion of the process after time = 18th day from today with value of the stock as specified from the quote");

        //Calulating the standard deviation of the process after time = 18th day from today with value of the stock as specified from the quote
        //The standard deviation = volatility*sqrt(dt)
        final Matrix stdDeviation = process.stdDeviation(process.time(date18.clone()), new Array(1).fill(5.6), 0.01);
        System.out.println("The stdDeviation of the process after time = 18th day from today with value of the stock as specified from the quote");

        //Calulating the expected value of the stock quote after time = 18th day from today with the current value of the stock as specified from the quote
        //The expectedValue = intialValue*exp(drift*dt)-----can be obtained by integrating----->dx/x= drift*dt
        final Array expectation = process.expectation(process.time(date18.clone()), new Array(1).fill(5.6), 0.01);
        System.out.println("Expected value = "+expectation.first());

        //Calulating the exact value of the stock quote after time = 18th day from today with the current value of the stock as specified from the quote
        //The exact value = intialValue*exp(drift*dt)*exp(volatility*sqrt(dt))-----can be obtained by integrating----->dx/x= drift*dt+volatility*sqrt(dt)
        final Array evolve = process.evolve(process.time(date18.clone()), new Array(1).fill(6.7), .001, new Array(1).fill(new NormalDistribution().op(Math.random()) ));
        System.out.println("Exact value = "+evolve.first());

        //Calculating covariance of the process
        final Matrix covariance = process.covariance(process.time(date18.clone())new Array(1).fill(5.6), 0.01);
        System.out.println("Covariance = "+covariance.get(0, 0));

        clock.stopClock();
        clock.log();
    }
View Full Code Here

        final Handle<YieldTermStructure> dividendYield = new Handle(new FlatForward(today, 0.0, dayCount));

        final Handle<BlackVolTermStructure> volatility = new Handle(new BlackConstantVol(today, calendar, sigma_.doubleValue(),dayCount));

        final StochasticProcess1D diffusion = new BlackScholesMertonProcess(
                stateVariable, dividendYield, riskFreeRate, volatility);


        // Black Scholes equation rules the path generator:
        // at each step the log of the stock
View Full Code Here

        final PlainVanillaPayoff payoff = (PlainVanillaPayoff) a.payoff;
        QL.require(payoff!=null , "non-plain payoff given"); // TODO: message

        final double maturity = rfdc.yearFraction(referenceDate, maturityDate);

        final StochasticProcess1D bs = new GeneralizedBlackScholesProcess(process.stateVariable(), flatDividends, flatRiskFree, flatVol);
        final TimeGrid grid = new TimeGrid(maturity, timeSteps_);
        final Tree tree = (Tree)getTreeInstance(bs, maturity, timeSteps_, payoff.strike());

        final BlackScholesLattice<Tree> lattice = new BlackScholesLattice<Tree>(tree, rRate, maturity, timeSteps_);
        final DiscretizedVanillaOption option = new DiscretizedVanillaOption(a, process, grid);
View Full Code Here

       final PlainVanillaPayoff payoff = (PlainVanillaPayoff) a.payoff;
       QL.require(payoff!=null , "non-plain payoff given"); // QA:[RG]::verified // TODO: message

       final double maturity = rfdc.yearFraction(referenceDate, maturityDate);

       final StochasticProcess1D bs = new GeneralizedBlackScholesProcess(process.stateVariable(), flatDividends, flatRiskFree, flatVol);
       final TimeGrid grid = new TimeGrid(maturity, timeSteps);
       final Tree tree = (Tree)getTreeInstance(bs, maturity, timeSteps, payoff.strike());

       final BlackScholesDividendLattice<Tree> lattice = new BlackScholesDividendLattice<Tree>(tree, rRate, maturity, timeSteps,
                                                                           rfdc, grid, referenceDate, a.cashFlow);
View Full Code Here

TOP

Related Classes of org.jquantlib.processes.StochasticProcess1D$Discretization1D

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.