This subroutine uses householder transformations with optional column pivoting to compute a QR factorization of the {@latex$ m} by {@latex$ n} matrix {@latex$ A}.
That is, Minpack_f77#qrfac determines an orthogonal matrix {@latex$ Q}, a permutation matrix {@latex$ P}, and an upper trapezoidal matrix {@latex$ R} with diagonal elements of nonincreasing magnitude, such that {@latex$ A*P = Q*R}.
Return value ipvt
is an integer array of length {@latex$ n}, which defines the permutation matrix {@latex$ P}such that {@latex$ A*P = Q*R}.
Column {@latex$ j} of {@latex$ P} is column ipvt[j]
of the identity matrix.
See lmdiff.cpp for further details. @see MathWorld @see Wikipedia @see MINPACK/J @see MINPACK @author Richard Gomes
|
|