Package org.jquantlib.math.matrixutilities

Examples of org.jquantlib.math.matrixutilities.Identity


              { 1.00.90.7 },
              { 0.91.00.3 },
              { 0.70.31.0 }
        }, flags);

        final Matrix I = new Identity(3, flags);

        final Matrix M3 = new Matrix(new double[][] {
              { 1,   2,   3,   4 },
              { 2,   0,   2,   1 },
              { 0,   1,   0,   0 }
View Full Code Here


              { 1.00.90.7 },
              { 0.91.00.3 },
              { 0.70.31.0 }
        }, flags);

        final Matrix I = new Identity(3, flags);

        final Matrix M3 = new Matrix(new double[][] {
              { 1,   2,   3,   4 },
              { 2,   0,   2,   1 },
              { 0,   1,   0,   0 }
View Full Code Here

              { 1.00.90.7 },
              { 0.91.00.3 },
              { 0.70.31.0 }
        }, flags);

        final Matrix I = new Identity(3, flags);

        final Matrix M3 = new Matrix(new double[][] {
              { 1,   2,   3,   4 },
              { 2,   0,   2,   1 },
              { 0,   1,   0,   0 }
View Full Code Here

              { 1.00.90.7 },
              { 0.91.00.3 },
              { 0.70.31.0 }
        }, flags);

        final Matrix I = new Identity(3, flags);

        // from Higham - nearest correlation matrix
        final Matrix M5 = new Matrix(new double[][] {
              {  2,   -1,     0,    0 },
              { -1,    2,    -1,    0 },
View Full Code Here

        // System.out.println("I1 = "+I1.toString());

        final Matrix I2 = A.mul(invA);
        // System.out.println("I2 = "+I2.toString());

        final Matrix eins = new Identity(A.rows());
        // System.out.println("eins = "+eins.toString());

        final double d = norm(I1.sub(eins));
        // System.out.println("d = "+String.valueOf(d));
View Full Code Here

                }
        }

        // check normalization
        final Matrix m = eigenVectors.mul(eigenVectors.transpose());
        final Identity ID = new Identity(N);
        final double tol = norm(m.sub(ID));
        if (tol > 1.0e-15) {
                fail("Eigenvector not normalized");
            }
      }
View Full Code Here

              { 1.00.90.7 },
              { 0.91.00.3 },
              { 0.70.31.0 }
        }, flags);

        final Matrix I = new Identity(3, flags);

        final Matrix M3 = new Matrix(new double[][] {
              { 1,   2,   3,   4 },
              { 2,   0,   2,   1 },
              { 0,   1,   0,   0 }
View Full Code Here

TOP

Related Classes of org.jquantlib.math.matrixutilities.Identity

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.