List<PerformanceTuple> data = dataSet.getInstances();
int trainEndIndex = (int) Math.floor(data.size() * percentage);
// Generate predictor
IDataSelector trainingDataSelector =
new SimpleDataSelector(0, trainEndIndex);
List<PerformanceTuple> trainingData = trainingDataSelector.selectData(data);
IPerformancePredictorGenerator predGen =
predGenFactory.createPredictorGenerator(parameters, data.get(0));
IPerformancePredictor predictor =
predGen.generatePredictor(trainingData, dataSet.getMetaData());
// Evaluate predictor
IDataSelector testDataSelector =
new SimpleDataSelector(trainEndIndex, data.size());
List<PerformanceTuple> testData = testDataSelector.selectData(data);
IPredictorEvaluator sev = new FullPredictorEvaluator();
result.add(sev.evaluate(predictor, trainingData, testData, parameters));
return result;
}