BaseGenerator featureGen = new BaseGenerator();
ZeroOneLoss loss = new ZeroOneLoss();
Inferencer msolver = new MultiLinearMax(featureGen, al, null,2);
PATrainer trainer = new PATrainer(msolver, featureGen, loss, round,c, null);
Linear pclassifier = trainer.train(train, null);
String modelFile = path+".m.gz";
pclassifier.saveTo(modelFile);
long end = System.currentTimeMillis();