Package org.encog.neural.freeform.training

Examples of org.encog.neural.freeform.training.FreeformResilientPropagation


    MLTrain train;

    if (method instanceof SVM) {
      train = new SVMTrain((SVM)method, dataSet);
    } if(method instanceof FreeformNetwork ) {
      train = new FreeformResilientPropagation((FreeformNetwork) method, dataSet);
    } else {
      train = new ResilientPropagation((ContainsFlat)method, dataSet);
    }
    EncogUtility.trainToError(train, error);
  }
View Full Code Here


  {
    MLDataSet trainingData = new BasicMLDataSet(XOR.XOR_INPUT,XOR.XOR_IDEAL);
   
    FreeformNetwork network = NetworkUtil.createXORFreeformNetworkUntrained();

    MLTrain bprop = new FreeformResilientPropagation(network, trainingData);
    NetworkUtil.testTraining(trainingData,bprop,0.01);
  }
View Full Code Here

  public void testEncode() {
   
    // train (and test) a network
    MLDataSet trainingData = new BasicMLDataSet(XOR.XOR_INPUT,XOR.XOR_IDEAL);   
    FreeformNetwork trainedNetwork = NetworkUtil.createXORFreeformNetworkUntrained();
    MLTrain bprop = new FreeformResilientPropagation(trainedNetwork, trainingData);
    NetworkUtil.testTraining(trainingData,bprop,0.01);
   
    trainedNetwork = (FreeformNetwork) bprop.getMethod();
   
    // allocate space to encode to
    double[] encoded = new double[trainedNetwork.encodedArrayLength()];
   
    // encode the network
View Full Code Here

TOP

Related Classes of org.encog.neural.freeform.training.FreeformResilientPropagation

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.