FlatNetwork network = new FlatNetwork(input[0].length, HIDDEN_COUNT, 0,
output[0].length, false);
network.randomize();
BasicMLDataSet trainingSet = new BasicMLDataSet(input, output);
TrainFlatNetworkBackPropagation train = new TrainFlatNetworkBackPropagation(
network, trainingSet, 0.7, 0.7);
double[] a = new double[2];
double[] b = new double[1];
Stopwatch sw = new Stopwatch();
sw.start();
// run epoch of learning procedure
for (int i = 0; i < ITERATIONS; i++) {
train.iteration();
}
sw.stop();
return sw.getElapsedMilliseconds();
}