network, score, 10, 2, 100);
final MLTrain trainMain = new Backpropagation(network, trainingSet,0.000001, 0.0);
((Propagation)trainMain).setNumThreads(1);
final StopTrainingStrategy stop = new StopTrainingStrategy();
trainMain.addStrategy(new Greedy());
trainMain.addStrategy(new HybridStrategy(trainAlt));
trainMain.addStrategy(stop);
int epoch = 0;
while (!stop.shouldStop()) {
trainMain.iteration();
System.out.println("Training " + what + ", Epoch #" + epoch
+ " Error:" + trainMain.getError());
epoch++;
}