Package org.encog.ml.data.buffer

Examples of org.encog.ml.data.buffer.BufferedNeuralDataSet


   */
  @Override
  public final void performJobUnit(final JobUnitContext context) {

    final BasicNetwork network = (BasicNetwork) context.getJobUnit();
    BufferedNeuralDataSet buffer = null;
    MLDataSet useTraining = this.training;

    if (this.training instanceof BufferedNeuralDataSet) {
      buffer = (BufferedNeuralDataSet) this.training;
      useTraining = buffer.openAdditional();
    }

    // train the neural network

    double error = Double.POSITIVE_INFINITY;
    for (int z = 0; z < this.weightTries; z++) {
      network.reset();
      final Propagation train = new ResilientPropagation(network,
          useTraining);
      final StopTrainingStrategy strat = new StopTrainingStrategy(0.001,
          5);

      train.addStrategy(strat);
      train.setNumThreads(1); // force single thread mode

      for (int i = 0; (i < this.iterations) && !getShouldStop()
          && !strat.shouldStop(); i++) {
        train.iteration();
      }

      error = Math.min(error, train.getError());
    }

    if (buffer != null) {
      buffer.close();
    }

    if (!getShouldStop()) {
      // update min and max

View Full Code Here


  private BufferedNeuralDataSet data;
 
  public BinaryDataTab(ProjectFile file) {
    super(file);
   
    this.data = new BufferedNeuralDataSet(file.getFile());
 
    setLayout(new BorderLayout());
    this.toolbar = new JToolBar();
    this.toolbar.setFloatable(false);
    this.toolbar.add(this.addInputColumn = new JButton("Add Input Column"));
View Full Code Here

      final File binFile, final int inputCount, final int outputCount,
      final boolean headers) {
    binFile.delete();
    final CSVNeuralDataSet csv = new CSVNeuralDataSet(csvFile.toString(),
        inputCount, outputCount, false);
    final BufferedNeuralDataSet buffer = new BufferedNeuralDataSet(binFile);
    buffer.beginLoad(inputCount, outputCount);
    for (final MLDataPair pair : csv) {
      buffer.add(pair);
    }
    buffer.endLoad();
  }
View Full Code Here

  private EncogUtility() {

  }

  public static MLDataSet loadEGB2Memory(File filename) {
    BufferedNeuralDataSet buffer = new BufferedNeuralDataSet(filename);
    return buffer.loadToMemory();
  }
View Full Code Here

    {

        (new File(binFile)).delete();
        CSVNeuralDataSet csv = new CSVNeuralDataSet(csvFile.toString(),
               inputCount, outputCount, headers);
        BufferedNeuralDataSet buffer = new BufferedNeuralDataSet(new File(binFile));
        buffer.beginLoad(inputCount, outputCount);
        for(MLDataPair pair : csv)
        {
            buffer.add(pair);
        }
        buffer.endLoad();
    }
View Full Code Here

   {

       binFile.delete();
       ReadCSV csv = new ReadCSV(csvFile.toString(), headers, format);
      
       BufferedNeuralDataSet buffer = new BufferedNeuralDataSet(binFile);
       buffer.beginLoad(input.length, ideal.length);
       while(csv.next())
       {
         BasicMLData inputData = new BasicMLData(input.length);
         BasicMLData idealData = new BasicMLData(ideal.length);
        
         // handle input data
         for(int i=0;i<input.length;i++) {
           inputData.setData(i, csv.getDouble(input[i]));
         }
        
         // handle input data
         for(int i=0;i<ideal.length;i++) {
           idealData.setData(i, csv.getDouble(ideal[i]));
         }
        
         // add to dataset
        
           buffer.add(inputData,idealData);
       }
       buffer.endLoad();
   }
View Full Code Here

        1000, 10000, 10, 10, -1, 1);

    // create the binary file

    file.delete();
    BufferedNeuralDataSet training2 = new BufferedNeuralDataSet(file);
    training2.load(training);

    final long start = System.currentTimeMillis();
    final long stop = start + (10 * Evaluate.MILIS);
    int record = 0;

    MLDataPair pair = BasicMLDataPair.createPair(10, 10);

    int iterations = 0;
    while (System.currentTimeMillis() < stop) {
      iterations++;
      training2.getRecord(record++, pair);
      if (record >= training2.getRecordCount())
        record = 0;
    }

    training.close();
    iterations /= 100000;
View Full Code Here

        10000, 10, 10, -1, 1);
   
    // create the binary file
   
    file.delete();
    BufferedNeuralDataSet training2 = new BufferedNeuralDataSet(file);
    training2.load(training);
   
    final long start = System.currentTimeMillis();
    final long stop = start + (10*Evaluate.MILIS);
    int record = 0;
   
    MLDataPair pair = BasicMLDataPair.createPair(10, 10);
   
    int iterations = 0;
    while( System.currentTimeMillis()<stop ) {
      iterations++;
      training2.getRecord(record++, pair)
      if( record>=training2.getRecordCount() )
        record = 0;
    }
   
    System.out.println("In 10 seconds, the disk(binary) dataset read " +
        Format.formatInteger( iterations) + " records.");
View Full Code Here

 
 
  public void testBufferData() throws Exception
  {
    new File(FILENAME).delete();
    BufferedNeuralDataSet set = new BufferedNeuralDataSet(new File(FILENAME));
    set.beginLoad(2, 1);
    for(int i=0;i<XOR.XOR_INPUT.length;i++) {
      BasicMLData input = new BasicMLData(XOR.XOR_INPUT[i]);
      BasicMLData ideal = new BasicMLData(XOR.XOR_IDEAL[i]);
      set.add(input,ideal);
    }
    set.endLoad();
   
    XOR.testXORDataSet(set);
   
 
View Full Code Here

   */
  public MLDataSet getTrainingSet() {
    if( this.comboTraining.getSelectedValue()==null )     
      return null;
    File file = ((ProjectTraining)this.comboTraining.getSelectedValue()).getFile();
    BufferedNeuralDataSet result = new BufferedNeuralDataSet(file);
    return result;
  }
View Full Code Here

TOP

Related Classes of org.encog.ml.data.buffer.BufferedNeuralDataSet

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.