Package org.encog.engine.network.activation

Examples of org.encog.engine.network.activation.ActivationStep


  {
    MLDataSet trainingSet = new BasicMLDataSet(XOR.XOR_INPUT, XOR.XOR_IDEAL);
   
    CalculateScore score = new TrainingSetScore(trainingSet);
    // train the neural network
    ActivationStep step = new ActivationStep();
    step.setCenter(0.5);
   
    NEATTraining train = new NEATTraining(
        score, 2, 1, 10);
    //train.setOutputActivationFunction(step);
   
View Full Code Here


   
  private NEATNetwork create()
  {
    List<NEATNeuron> neurons = new ArrayList<NEATNeuron>();
    ActivationFunction afSigmoid = new ActivationSigmoid();
    ActivationFunction afStep = new ActivationStep();
   
    // create the neurons
    NEATNeuron input1 = new NEATNeuron(
        NEATNeuronType.Input,
        1,
View Full Code Here

    if (name.equalsIgnoreCase(MLActivationFactory.AF_SOFTMAX)) {
      return new ActivationSoftMax();
    }

    if (name.equalsIgnoreCase(MLActivationFactory.AF_STEP)) {
      return new ActivationStep();
    }

    if (name.equalsIgnoreCase(MLActivationFactory.AF_TANH)) {
      return new ActivationTANH();
    }
View Full Code Here

    MLDataSet trainingSet = new BasicMLDataSet(XOR_INPUT, XOR_IDEAL);
    NEATPopulation pop = new NEATPopulation(2,1,1000);
    CalculateScore score = new TrainingSetScore(trainingSet);
    // train the neural network
    ActivationStep step = new ActivationStep();
    step.setCenter(0.5);
    pop.setOutputActivationFunction(step);
   
    final NEATTraining train = new NEATTraining(score,pop);
   
    EncogUtility.trainToError(train, 0.01);
View Full Code Here

      break;
    case 7:
      newActivation = new ActivationSoftMax();
      break;
    case 8:
      newActivation = new ActivationStep();
      break;           
    case 9:
      newActivation = new ActivationTANH();
      break;
    case 10:
View Full Code Here

    if (name.equalsIgnoreCase(MLActivationFactory.AF_SOFTMAX)) {
      return new ActivationSoftMax();
    }

    if (name.equalsIgnoreCase(MLActivationFactory.AF_STEP)) {
      return new ActivationStep();
    }

    if (name.equalsIgnoreCase(MLActivationFactory.AF_TANH)) {
      return new ActivationTANH();
    }
View Full Code Here

  {
    MLDataSet trainingSet = new BasicMLDataSet(XOR.XOR_INPUT, XOR.XOR_IDEAL);
   
    CalculateScore score = new TrainingSetScore(trainingSet);
    // train the neural network
    ActivationStep step = new ActivationStep();
    step.setCenter(0.5);

    EvolutionaryAlgorithm train = NEATUtil.constructNEATTrainer(
        score, 2, 1, 10);
    //train.setOutputActivationFunction(step);
   
View Full Code Here

TOP

Related Classes of org.encog.engine.network.activation.ActivationStep

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.