Package org.data2semantics.exp.utils

Examples of org.data2semantics.exp.utils.RDFOldKernelExperiment


        List<List<Result>> res = new ArrayList<List<Result>>();
        for (long seed : seeds) {
          long[] s2 = new long[1];
          s2[0] = seed;
          createGeoDataSet(seed, fraction, minSize, "http://data.bgs.ac.uk/ref/Lexicon/hasTheme");
          KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new ECML2013RDFWLSubTreeKernel(it, i, inference, true, false), s2, parms, dataset, instances, labels, blackList);
          res.add(exp.getResults());

          System.out.println("Running WL RDF: " + i + " " + it);
          if (experimenter.hasSpace()) {
            experimenter.addExperiment(exp);
          }


        }

        experimenter.stop();
        try {
          while (expT.isAlive()) {
            Thread.sleep(1000);
          }
        } catch (Exception e) {
          e.printStackTrace();
        }

        for (Result res2 : Result.mergeResultLists(res)) {
          resTable.addResult(res2);
        }
      }
    }
    saveResults(resTable, "geo_theme.ser");


    inference = true;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("WL RDF, inference, depth="+i);
      for (int it : iterations) {
        Experimenter experimenter = new Experimenter(2);
        Thread expT = new Thread(experimenter);
        expT.setDaemon(true);
        expT.start();


        List<List<Result>> res = new ArrayList<List<Result>>();
        for (long seed : seeds) {
          long[] s2 = new long[1];
          s2[0] = seed;
          createGeoDataSet(seed, fraction, minSize, "http://data.bgs.ac.uk/ref/Lexicon/hasTheme");
          KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new ECML2013RDFWLSubTreeKernel(it, i, inference, true, false), s2, parms, dataset, instances, labels, blackList);
          res.add(exp.getResults());

          System.out.println("Running WL RDF: " + i + " " + it);
          if (experimenter.hasSpace()) {
            experimenter.addExperiment(exp);
          }


        }

        experimenter.stop();

        while (expT.isAlive()) {
          try {
            Thread.sleep(1000);
          } catch (Exception e) {
            e.printStackTrace();
          }
        }

        for (Result res2 : Result.mergeResultLists(res)) {
          resTable.addResult(res2);
        }
      }
    }
    saveResults(resTable, "geo_theme.ser");


    inference = false;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("IST, no inference, depth="+i);

      Experimenter experimenter = new Experimenter(2);
      Thread expT = new Thread(experimenter);
      expT.setDaemon(true);
      expT.start();

      List<List<Result>> res = new ArrayList<List<Result>>();
      for (long seed : seeds) {
        long[] s2 = new long[1];
        s2[0] = seed;
        createGeoDataSet(seed, fraction,  minSize, "http://data.bgs.ac.uk/ref/Lexicon/hasTheme");
        KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionSubTreeKernel(i, 1, inference, true, false), s2, parms, dataset, instances, labels, blackList);
        res.add(exp.getResults());

        System.out.println("Running IST: " + i);
        if (experimenter.hasSpace()) {
          experimenter.addExperiment(exp);
        }
      }

      experimenter.stop();

      while (expT.isAlive()) {
        try {
          Thread.sleep(1000);
        } catch (Exception e) {
          e.printStackTrace();
        }
      }

      for (Result res2 : Result.mergeResultLists(res)) {
        resTable.addResult(res2);
      }
    }
    saveResults(resTable, "geo_theme.ser");


    inference = true;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("IST, inference, depth="+i);

      Experimenter experimenter = new Experimenter(2);
      Thread expT = new Thread(experimenter);
      expT.setDaemon(true);
      expT.start();

      List<List<Result>> res = new ArrayList<List<Result>>();
      for (long seed : seeds) {
        long[] s2 = new long[1];
        s2[0] = seed;
        createGeoDataSet(seed, fraction,  minSize, "http://data.bgs.ac.uk/ref/Lexicon/hasTheme");
        KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionSubTreeKernel(i, 1, inference, true, false), s2, parms, dataset, instances, labels, blackList);
        res.add(exp.getResults());


        System.out.println("Running IST: " + i);
        if (experimenter.hasSpace()) {
          experimenter.addExperiment(exp);
        }

      }

      experimenter.stop();

      while (expT.isAlive()) {
        try {
          Thread.sleep(1000);
        } catch (Exception e) {
          e.printStackTrace();
        }
      }

      for (Result res2 : Result.mergeResultLists(res)) {
        resTable.addResult(res2);
      }
    }
    saveResults(resTable, "geo_theme.ser");


    inference = false;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("IPST, no inference, depth="+i);

      Experimenter experimenter = new Experimenter(2);
      Thread expT = new Thread(experimenter);
      expT.setDaemon(true);
      expT.start();

      List<List<Result>> res = new ArrayList<List<Result>>();
      for (long seed : seeds) {
        long[] s2 = new long[1];
        s2[0] = seed;
        createGeoDataSet(seed, fraction,  minSize, "http://data.bgs.ac.uk/ref/Lexicon/hasTheme");
        KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionPartialSubTreeKernel(i, 0.01, inference, true, false), s2, parms, dataset, instances, labels, blackList);
        res.add(exp.getResults());

        System.out.println("Running IPST: " + i);
        if (experimenter.hasSpace()) {
          experimenter.addExperiment(exp);
        }
      }

      experimenter.stop();

      while (expT.isAlive()) {
        try {
          Thread.sleep(1000);
        } catch (Exception e) {
          e.printStackTrace();
        }
      }

      for (Result res2 : Result.mergeResultLists(res)) {
        resTable.addResult(res2);
      }
    }
    saveResults(resTable, "geo_theme.ser");



    inference = true;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("IPST, inference, depth="+i);

      Experimenter experimenter = new Experimenter(2);
      Thread expT = new Thread(experimenter);
      expT.setDaemon(true);
      expT.start();

      List<List<Result>> res = new ArrayList<List<Result>>();
      for (long seed : seeds) {
        long[] s2 = new long[1];
        s2[0] = seed;
        createGeoDataSet(seed, fraction,  minSize, "http://data.bgs.ac.uk/ref/Lexicon/hasTheme");
        KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionPartialSubTreeKernel(i, 0.01, inference, true, false), s2, parms, dataset, instances, labels, blackList);
        res.add(exp.getResults());

        System.out.println("Running IPST: " + i);
        if (experimenter.hasSpace()) {
          experimenter.addExperiment(exp);
        }
View Full Code Here


    for (int i = 1; i <= depth; i++) {
      resTable.newRow("WL RDF, no inference, depth="+i);
      for (int it : iterations) {
        ECML2013RDFWLSubTreeKernel k = new ECML2013RDFWLSubTreeKernel(it, i, inference, true, blankLabels);
       
        KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(k, seeds, parms, dataset, instances, labels, blackList);

        System.out.println("Running WL RDF: " + i + " " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }
      }
    }
    saveResults(resTable, "geo_litho.ser");



    inference = true;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("WL RDF, inference, depth="+i);
      for (int it : iterations) {
        ECML2013RDFWLSubTreeKernel k = new ECML2013RDFWLSubTreeKernel(it, i, inference, true, blankLabels)
       
        KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(k, seeds, parms, dataset, instances, labels, blackList);

        System.out.println("Running WL RDF: " + i + " " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }
      }
    }
    saveResults(resTable, "geo_litho.ser");




    inference = false;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("IST, no inference, depth="+i);
      KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionSubTreeKernel(i, 1, inference, true, blankLabels), seeds, parms, dataset, instances, labels, blackList);

      System.out.println("Running IST: " + i + " ");
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
      }
    }
    saveResults(resTable, "geo_litho.ser");

    inference = true;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("IST, inference, depth="+i);
      KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionSubTreeKernel(i, 1, inference, true, blankLabels), seeds, parms, dataset, instances, labels, blackList);

      System.out.println("Running IST: " + i + " ");
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
      }
    }
    saveResults(resTable, "geo_litho.ser");


    inference = false;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("IPST, no inference, depth="+i);
      KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionPartialSubTreeKernel(i, 0.01, inference, true, blankLabels), seeds, parms, dataset, instances, labels, blackList);

      System.out.println("Running IPST: " + i + " ");
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
      }
    }
    saveResults(resTable, "geo_litho.ser");

    inference = true;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("IPST, inference, depth="+i);
      KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionPartialSubTreeKernel(i, 0.01, inference, true, blankLabels), seeds, parms, dataset, instances, labels, blackList);

      System.out.println("Running IPST: " + i + " ");
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
      }
    }
    saveResults(resTable, "geo_litho.ser");



    List<GeneralPredictionDataSetParameters> dataSetsParams = new ArrayList<GeneralPredictionDataSetParameters>();

    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 1, false, false));
    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 2, false, false));
    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 3, false, false));

    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 1, false, true));
    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 2, false, true));
    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 3, false, true));


    int[] iterationsIG = {1,2};
    long tic, toc;

    for (GeneralPredictionDataSetParameters params : dataSetsParams) {
      tic = System.currentTimeMillis();
      PropertyPredictionDataSet ds = DataSetFactory.createPropertyPredictionDataSet(params);
      toc = System.currentTimeMillis();

      if (blankLabels) {
        ds.removeVertexAndEdgeLabels();
      }

      resTable.newRow("WL");
      for (int it : iterations) {
        KernelExperiment<GraphKernel> exp = new GraphKernelExperiment(new ECML2013WLSubTreeKernel(it), seeds, parms, ds.getGraphs(), labels);

        System.out.println("Running WL: " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }

        double[] comps =  {0,0};
        comps[0] = toc-tic;
        comps[1] = toc-tic;
        Result resC = new Result(comps,"comp time 2");
        resTable.addResult(resC);

      }
    }
    saveResults(resTable, "geo_litho.ser");


    /*
    dataSetsParams = new ArrayList<GeneralPredictionDataSetParameters>();

    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 1, false, false));
    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 2, false, false));

    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 1, false, true));
    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 2, false, true));
     */




    for (GeneralPredictionDataSetParameters params : dataSetsParams) {
      tic = System.currentTimeMillis();
      PropertyPredictionDataSet ds = DataSetFactory.createPropertyPredictionDataSet(params);
      toc = System.currentTimeMillis();

      if (blankLabels) {
        ds.removeVertexAndEdgeLabels();
      }

      resTable.newRow("IGP");
      for (int it : iterationsIG) {
        KernelExperiment<GraphKernel> exp = new GraphKernelExperiment(new ECML2013IntersectionGraphPathKernel(it,1), seeds, parms, ds.getGraphs(), labels);

        System.out.println("Running IGP: " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }

        double[] comps =  {0,0};
        comps[0] = toc-tic;
        comps[1] = toc-tic;
        Result resC = new Result(comps,"comp time 2");
        resTable.addResult(resC);
      }
    }
    saveResults(resTable, "geo_litho.ser");


    for (GeneralPredictionDataSetParameters params : dataSetsParams) {
      tic = System.currentTimeMillis();
      PropertyPredictionDataSet ds = DataSetFactory.createPropertyPredictionDataSet(params);
      toc = System.currentTimeMillis();

      if (blankLabels) {
        ds.removeVertexAndEdgeLabels();
      }

      resTable.newRow("IGW");
      for (int it : iterationsIG) {
        KernelExperiment<GraphKernel> exp = new GraphKernelExperiment(new ECML2013IntersectionGraphWalkKernel(it,1), seeds, parms, ds.getGraphs(), labels);

        System.out.println("Running IGW: " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }

        double[] comps =  {0,0};
        comps[0] = toc-tic;
View Full Code Here

    for (int d : depths) {
      resTable.newRow("WL RDF, depth="+d);
      for (int it : iterations) {
        RDFWLSubTreeKernel k = new RDFWLSubTreeKernel(it, d, inference, true);
       
        RDFOldKernelExperiment exp = new RDFOldKernelExperiment(k, seeds, svmParms, dataset, instances, labels, blackList);
       
 
        System.out.println("Running WL RDF: " + d + " " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }
      }
    }
    System.out.println(resTable);
   


    for (int d : depths) {
      resTable.newRow("WL RDF BoW, depth="+d);
      for (int it : iterations) {
        RDFWLSubTreeWithTextKernel k = new RDFWLSubTreeWithTextKernel(it, d, inference, false);
        k.setDoTFIDFkernel(true);
       
        RDFOldKernelExperiment exp = new RDFOldKernelExperiment(k, seeds, svmParms, dataset, instances, labels, blackList);
   
        System.out.println("Running WL RDF text: " + d + " " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }
      }
    }
    System.out.println(resTable);

 
   
   
    for (int d : depths) {
      resTable.newRow("ITP, depth="+d);

      RDFOldKernelExperiment exp = new RDFOldKernelExperiment(new RDFIntersectionTreeEdgeVertexPathKernel(d, false, inference, true), seeds, svmParms, dataset, instances, labels, blackList);

      System.out.println("Running Edge Vertex Tree Path: " + d);
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
      }

    }
    System.out.println(resTable);
   


    for (int d : depths) {
      resTable.newRow("ITP BoW, depth="+d);

     
      RDFIntersectionTreeEdgeVertexPathWithTextKernel k = new RDFIntersectionTreeEdgeVertexPathWithTextKernel(d, false, inference, false);
      k.setDoTFIDFkernel(true);
     
      RDFOldKernelExperiment exp = new RDFOldKernelExperiment(k, seeds, svmParms, dataset, instances, labels, blackList);

      System.out.println("Running Edge Vertex Tree Path with Text: " + d);
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
      }

    }
    System.out.println(resTable);

   
    for (int d : depths) {
      resTable.newRow("IST, depth="+d);

      RDFOldKernelExperiment exp = new RDFOldKernelExperiment(new RDFIntersectionSubTreeKernel(d, 1, inference, true), seeds, svmParms, dataset, instances, labels, blackList);

      System.out.println("Running IST: " + d);
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
      }

    }
    System.out.println(resTable);
View Full Code Here

    resTable.setDigits(2);

    for (int depth : depths) {
      resTable.newRow("WL RDF Bi, depth="+depth);
      for (int it : iterations) {
        RDFOldKernelExperiment exp = new RDFOldKernelExperiment(new RDFWLBiSubTreeKernel(it, depth, inference, true), seeds, svmParms, dataset, instances, labels, blackList);

       
        System.out.println("Running WL RDF Bi: " + depth + " " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }
      }
    }
    System.out.println(resTable);

   
   
    for (int depth : depths) {
      resTable.newRow("WL RDF forward, depth="+depth);
      for (int it : iterations) {
        RDFOldKernelExperiment exp = new RDFOldKernelExperiment(new RDFWLSubTreeKernel(it, depth, inference, true), seeds, svmParms, dataset, instances, labels, blackList);

       
        System.out.println("Running WL RDF Fwd: " + depth + " " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }
      }
    }
    System.out.println(resTable);

    for (int depth : depths) {
      resTable.newRow("WL RDF reverse, depth="+depth);
      for (int it : iterations) {
        RDFOldKernelExperiment exp = new RDFOldKernelExperiment(new RDFWLSubTreeKernel(it, depth, inference, true, true, false), seeds, svmParms, dataset, instances, labels, blackList);

       
        System.out.println("Running WL RDF Rev: " + depth + " " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }
      }
    }
    System.out.println(resTable);
View Full Code Here

    for (int i = 1; i <= depth; i++) {
      resTable.newRow("WL RDF, no inference, depth=" + i);
      for (int it : iterations) {
        ECML2013RDFWLSubTreeKernel k = new ECML2013RDFWLSubTreeKernel(it, i, inference, true, blankLabels);
               
        KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(k, seeds, parms, dataset, instances, labels, blackList);

        System.out.println("Running WL RDF: " + i + " " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }
      }
    }
    saveResults(resTable, "affiliation.ser");



    inference = true;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("WL RDF, inference, depth=" + i);
      for (int it : iterations) {
        ECML2013RDFWLSubTreeKernel k = new ECML2013RDFWLSubTreeKernel(it, i, inference, true, blankLabels);
               
        KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(k, seeds, parms, dataset, instances, labels, blackList);

        System.out.println("Running WL RDF: " + i + " " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }
      }
    }
    saveResults(resTable, "affiliation.ser");


    inference = false;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("IST, no inference, depth=" + i);
      KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionSubTreeKernel(i, 1, inference, true, blankLabels), seeds, parms, dataset, instances, labels, blackList);

      System.out.println("Running IST: " + i + " ");
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
      }
    }
    saveResults(resTable, "affiliation.ser");

    inference = true;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("IST, inference, depth=" + i);
      KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionSubTreeKernel(i, 1, inference, true, blankLabels), seeds, parms, dataset, instances, labels, blackList);

      System.out.println("Running IST: " + i + " ");
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
      }
    }
    saveResults(resTable, "affiliation.ser");


    inference = false;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("IPST, no inference, depth=" + i);
      KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionPartialSubTreeKernel(i, 0.01, inference, true, blankLabels), seeds, parms, dataset, instances, labels, blackList);

      System.out.println("Running IPST: " + i + " ");
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
      }
    }
    saveResults(resTable, "affiliation.ser");

    inference = true;
    for (int i = 1; i <= depth; i++) {
      resTable.newRow("IPST, inference, depth=" + i);
      KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionPartialSubTreeKernel(i, 0.01, inference, true, blankLabels), seeds, parms, dataset, instances, labels, blackList);

      System.out.println("Running IPST: " + i + " ");
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
      }
    }
    saveResults(resTable, "affiliation.ser");




    List<GeneralPredictionDataSetParameters> dataSetsParams = new ArrayList<GeneralPredictionDataSetParameters>();

    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 1, false, false));
    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 2, false, false));
    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 3, false, false));

    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 1, false, true));
    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 2, false, true));
    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 3, false, true));


    int[] iterationsIG = {1,2};
    long tic, toc;

    for (GeneralPredictionDataSetParameters params : dataSetsParams) {
      tic = System.currentTimeMillis();
      PropertyPredictionDataSet ds = DataSetFactory.createPropertyPredictionDataSet(params);
      toc = System.currentTimeMillis();

      if (blankLabels) {
        ds.removeVertexAndEdgeLabels();
      }

      resTable.newRow("WL");
      for (int it : iterations) {
        KernelExperiment<GraphKernel> exp = new GraphKernelExperiment(new ECML2013WLSubTreeKernel(it), seeds, parms, ds.getGraphs(), labels);

        System.out.println("Running WL: " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }

        double[] comps =  {0,0};
        comps[0] = toc-tic;
        comps[1] = toc-tic;
        Result resC = new Result(comps,"comp time 2");
        resTable.addResult(resC);

      }
    }
    saveResults(resTable, "affiliation.ser");



    /*
    dataSetsParams = new ArrayList<GeneralPredictionDataSetParameters>();

    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 1, false, false));
    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 2, false, false));

    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 1, false, true));
    dataSetsParams.add(new GeneralPredictionDataSetParameters(dataset, blackLists, instances, 2, false, true));
     */


    for (GeneralPredictionDataSetParameters params : dataSetsParams) {
      tic = System.currentTimeMillis();
      PropertyPredictionDataSet ds = DataSetFactory.createPropertyPredictionDataSet(params);
      toc = System.currentTimeMillis();

      if (blankLabels) {
        ds.removeVertexAndEdgeLabels();
      }

      resTable.newRow("IGP");
      for (int it : iterationsIG) {
        KernelExperiment<GraphKernel> exp = new GraphKernelExperiment(new ECML2013IntersectionGraphPathKernel(it,1), seeds, parms, ds.getGraphs(), labels);

        System.out.println("Running IGP: " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }

        double[] comps =  {0,0};
        comps[0] = toc-tic;
        comps[1] = toc-tic;
        Result resC = new Result(comps,"comp time 2");
        resTable.addResult(resC);
      }
    }
    saveResults(resTable, "affiliation.ser");


   
    for (GeneralPredictionDataSetParameters params : dataSetsParams) {
      tic = System.currentTimeMillis();
      PropertyPredictionDataSet ds = DataSetFactory.createPropertyPredictionDataSet(params);
      toc = System.currentTimeMillis();

      if (blankLabels) {
        ds.removeVertexAndEdgeLabels();
      }

      resTable.newRow("IGW");
      for (int it : iterationsIG) {
        KernelExperiment<GraphKernel> exp = new GraphKernelExperiment(new ECML2013IntersectionGraphWalkKernel(it,1), seeds, parms, ds.getGraphs(), labels);

        System.out.println("Running IGW: " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }

        double[] comps =  {0,0};
        comps[0] = toc-tic;
View Full Code Here

        LibSVMParameters svmParms = new LibSVMParameters(LibSVMParameters.C_SVC, cs);
        svmParms.setNumFolds(5);


        KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionSubTreeKernel(i, 1, inference, true), seeds2, svmParms, dataset, instances, labels, blackList);

        System.out.println("Running IST: " + i);
        exp.run();
        res.add(exp.getResults());
      }

      for (Result res2 : Result.mergeResultLists(res)) {
        resTable.addResult(res2);
      }
View Full Code Here

    resTable.setDigits(2);

    for (int depth : depths) {
      resTable.newRow("WL RDF, depth="+depth);
      for (int it : iterations) {
        RDFOldKernelExperiment exp = new RDFOldKernelExperiment(new RDFWLSubTreeKernel(it, depth, inference, true), seeds, svmParms, dataset, instances, labels, blackList);

       
        System.out.println("Running WL RDF: " + depth + " " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }
      }
    }
    System.out.println(resTable);

    for (int depth : depths) {
      resTable.newRow("WL RDF BoW, depth="+depth);
      for (int it : iterations) {
        RDFOldKernelExperiment exp = new RDFOldKernelExperiment(new RDFWLSubTreeWithTextKernel(it, depth, inference, true), seeds, svmParms, dataset, instances, labels, blackList);

       
        System.out.println("Running WL RDF with Text: " + depth + " " + it);
        exp.run();

        for (Result res : exp.getResults()) {
          resTable.addResult(res);
        }
      }
    }
    System.out.println(resTable);
   
   
    ResultsTable table2 = new ResultsTable();
   
    for (int depth : depths) {
      resTable.newRow("ITP, depth="+depth);
      table2.newRow("");
     
      RDFOldKernelExperiment exp = new RDFOldKernelExperiment(new RDFIntersectionTreeEdgeVertexPathKernel(depth, false, inference, true), seeds, svmParms, dataset, instances, labels, blackList);

      System.out.println("Running ITP: " + depth);
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
        table2.addResult(res);
      }
    }
    System.out.println(resTable);
   
    for (int depth : depths) {
      resTable.newRow("ITP BoW, depth="+depth);
      table2.newRow("");
     
      RDFOldKernelExperiment exp = new RDFOldKernelExperiment(new RDFIntersectionTreeEdgeVertexPathWithTextKernel(depth, false, inference, false), seeds, svmParms, dataset, instances, labels, blackList);

      System.out.println("Running ITP with Text: " + depth);
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
        table2.addResult(res);
      }
    }
    System.out.println(resTable);
   
    for (int depth : depths) {
      resTable.newRow("IST, depth="+depth);
      RDFOldKernelExperiment exp = new RDFOldKernelExperiment(new RDFIntersectionSubTreeKernel(depth, 1, inference, true), seeds, svmParms, dataset, instances, labels, blackList);

      System.out.println("Running IST: " + depth);
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
      }
    }
   
    resTable.addCompResults(resTable.getBestResults());
View Full Code Here

      for (int it : iterations) {
        resTable.newRow("");
       
       
        LibSVMParameters parms = new LibSVMParameters(LibSVMParameters.C_SVC, cs);
        KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFWLSubTreeKernel(it, i, inference, true), seeds, parms, dataset, instances, labels, blackList);
       
        System.out.println("Running WL RDF: " + i + " " + it);
        exp.run();
       
        for (Result res : exp.getResults()) {
          resTable.addResult(res);
       
      }
    }
   
View Full Code Here

    for (int i : depths) {     
      resTable.newRow("");

      LibSVMParameters svmParms = new LibSVMParameters(LibSVMParameters.C_SVC, cs);
   
      KernelExperiment<RDFGraphKernel> exp = new RDFOldKernelExperiment(new RDFIntersectionSubTreeKernel(i, 1, inference, true), seeds, svmParms, dataset, instances, labels, blackList);

      System.out.println("Running IST: " + i);
      exp.run();

      for (Result res : exp.getResults()) {
        resTable.addResult(res);
     
    }

View Full Code Here

TOP

Related Classes of org.data2semantics.exp.utils.RDFOldKernelExperiment

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.