tempFolderPath, fullSlotTypeNames, filterSet, skip, delegate);
}
public TextRulerLearnerParameter[] getAlgorithmParameters() {
TextRulerLearnerParameter[] result = new TextRulerLearnerParameter[6];
result[0] = new TextRulerLearnerParameter(TrabalLearner.ALGORITHM_ITERATIONS_KEY,
"Number of times, the algorithm iterates.", MLAlgorithmParamType.ML_INT_PARAM);
result[1] = new TextRulerLearnerParameter(TrabalLearner.MAX_NUMBER_OF_BASIC_RULES_KEY,
"Number of basic rules to be created for one example.",
MLAlgorithmParamType.ML_INT_PARAM);
result[2] = new TextRulerLearnerParameter(TrabalLearner.MAX_NUMBER_OF_RULES_KEY,
"Number of optimized rules to be created for one example.",
MLAlgorithmParamType.ML_INT_PARAM);
result[3] = new TextRulerLearnerParameter(TrabalLearner.MAX_NUMBER_OF_ITERATIONS_KEY,
"Maximum number of iterations, when optimizing rules.",
MLAlgorithmParamType.ML_INT_PARAM);
result[4] = new TextRulerLearnerParameter(TrabalLearner.MAX_ERROR_RATE_KEY,
"Maximum allowed error rate.", MLAlgorithmParamType.ML_DOUBLE_PARAM);
result[5] = new TextRulerLearnerParameter(TrabalLearner.ENABLE_FEATURES_KEY,
"Correct features in rules and conditions.", MLAlgorithmParamType.ML_BOOL_PARAM);
return result;
}