Package org.apache.mahout.math.jet.random.engine

Examples of org.apache.mahout.math.jet.random.engine.RandomEngine


      double t;
      double em;
      double sq = this.cached_sq;
      double alxm = this.cached_alxm;

      RandomEngine rand = this.randomGenerator;
      do {
        double y;
        do {
          y = Math.tan(Math.PI * rand.raw());
          em = sq * y + xm;
        } while (em < 0.0);
        em = (double) (int) (em); // faster than em = Math.floor(em); (em>=0.0)
        t = 0.9 * (1.0 + y * y) * Math.exp(em * alxm - logGamma(em + 1.0) - g);
      } while (rand.raw() > t);
      return (int) em;
    } else { // mean is too large
      return (int) xm;
    }
  }
View Full Code Here


* uniform hats. Rectangular immediate acceptance regions speed   *
* up the generation. The remaining tails are covered by          *
* exponential functions.                                         *
*                                                                *
*****************************************************************/
    RandomEngine gen = this.randomGenerator;
    double my = theMean;

    //double t, g, my_k;

    //double gx, gy, px, py, e, x, xx, delta, v;
    //int sign;

    //static double p,q,p0,pp[36];
    //static long ll,m;

    int m;
    if (my < SWITCH_MEAN) { // CASE B: Inversion- start new table and calculate p0
      if (my != my_old) {
        my_old = my;
        llll = 0;
        p = Math.exp(-my);
        q = p;
        p0 = p;
        //for (k=pp.length; --k >=0; ) pp[k] = 0;
      }
      m = (my > 1.0) ? (int) my : 1;
      while (true) {
        double u = gen.raw();
        int k = 0;
        if (u <= p0) {
          return (k);
        }
        if (llll != 0) {              // Step T. Table comparison
          int i = (u > 0.458) ? Math.min(llll, m) : 1;
          for (k = i; k <= llll; k++) {
            if (u <= pp[k]) {
              return (k);
            }
          }
          if (llll == 35) {
            continue;
          }
        }
        for (k = llll + 1; k <= 35; k++) { // Step C. Creation of new prob.
          p *= my / (double) k;
          q += p;
          pp[k] = q;
          if (u <= q) {
            llll = k;
            return (k);
          }
        }
        llll = 35;
      }
    }     // end my < SWITCH_MEAN
    else if (my < MEAN_MAX) { // CASE A: acceptance complement
      //static double        my_last = -1.0;
      //static long int      m,  k2, k4, k1, k5;
      //static double        dl, dr, r1, r2, r4, r5, ll, lr, l_my, c_pm,
      //             f1, f2, f4, f5, p1, p2, p3, p4, p5, p6;

      m = (int) my;
      if (my != my_last) { //  set-up
        my_last = my;

        // approximate deviation of reflection points k2, k4 from my - 1/2
        double Ds = Math.sqrt(my + 0.25);

        // mode m, reflection points k2 and k4, and points k1 and k5, which
        // delimit the centre region of h(x)
        k2 = (int) Math.ceil(my - 0.5 - Ds);
        k4 = (int) (my - 0.5 + Ds);
        k1 = k2 + k2 - m + 1;
        k5 = k4 + k4 - m;

        // range width of the critical left and right centre region
        dl = (double) (k2 - k1);
        dr = (double) (k5 - k4);

        // recurrence constants r(k) = p(k)/p(k-1) at k = k1, k2, k4+1, k5+1
        r1 = my / (double) k1;
        r2 = my / (double) k2;
        r4 = my / (double) (k4 + 1);
        r5 = my / (double) (k5 + 1);

        // reciprocal values of the scale parameters of expon. tail envelopes
        ll = Math.log(r1);                     // expon. tail left
        lr = -Math.log(r5);                     // expon. tail right

        // Poisson constants, necessary for computing function values f(k)
        l_my = Math.log(my);
        c_pm = m * l_my - Arithmetic.logFactorial(m);

        // function values f(k) = p(k)/p(m) at k = k2, k4, k1, k5
        f2 = f(k2, l_my, c_pm);
        f4 = f(k4, l_my, c_pm);
        f1 = f(k1, l_my, c_pm);
        f5 = f(k5, l_my, c_pm);

        // area of the two centre and the two exponential tail regions
        // area of the two immediate acceptance regions between k2, k4
        p1 = f2 * (dl + 1.0);                    // immed. left
        p2 = f2 * dl + p1;               // centre left
        p3 = f4 * (dr + 1.0) + p2;               // immed. right
        p4 = f4 * dr + p3;               // centre right
        p5 = f1 / ll + p4;               // expon. tail left
        p6 = f5 / lr + p5;               // expon. tail right
      } // end set-up

      while (true) {
        // generate uniform number U -- U(0, p6)
        // case distinction corresponding to U
        double W;
        double V;
        double U;
        int Y;
        int X;
        int Dk;
        if ((U = gen.raw() * p6) < p2) {         // centre left

          // immediate acceptance region R2 = [k2, m) *[0, f2),  X = k2, ... m -1
          if ((V = U - p1) < 0.0) {
            return (k2 + (int) (U / f2));
          }
          // immediate acceptance region R1 = [k1, k2)*[0, f1),  X = k1, ... k2-1
          if ((W = V / dl) < f1) {
            return (k1 + (int) (V / f1));
          }

          // computation of candidate X < k2, and its counterpart Y > k2
          // either squeeze-acceptance of X or acceptance-rejection of Y
          Dk = (int) (dl * gen.raw()) + 1;
          if (W <= f2 - Dk * (f2 - f2 / r2)) {            // quick accept of
            return (k2 - Dk);                          // X = k2 - Dk
          }
          if ((V = f2 + f2 - W) < 1.0) {                // quick reject of Y
            Y = k2 + Dk;
            if (V <= f2 + Dk * (1.0 - f2) / (dl + 1.0)) {// quick accept of
              return (Y);                             // Y = k2 + Dk
            }
            if (V <= f(Y, l_my, c_pm)) {
              return (Y);
            }    // final accept of Y
          }
          X = k2 - Dk;
        } else if (U < p4) {                                 // centre right
          // immediate acceptance region R3 = [m, k4+1)*[0, f4), X = m, ... k4
          if ((V = U - p3) < 0.0) {
            return (k4 - (int) ((U - p2) / f4));
          }
          // immediate acceptance region R4 = [k4+1, k5+1)*[0, f5)
          if ((W = V / dr) < f5) {
            return (k5 - (int) (V / f5));
          }

          // computation of candidate X > k4, and its counterpart Y < k4
          // either squeeze-acceptance of X or acceptance-rejection of Y
          Dk = (int) (dr * gen.raw()) + 1;
          if (W <= f4 - Dk * (f4 - f4 * r4)) {             // quick accept of
            return (k4 + Dk);                           // X = k4 + Dk
          }
          if ((V = f4 + f4 - W) < 1.0) {                 // quick reject of Y
            Y = k4 - Dk;
            if (V <= f4 + Dk * (1.0 - f4) / dr) {       // quick accept of
              return (Y);                             // Y = k4 - Dk
            }
            if (V <= f(Y, l_my, c_pm)) {
              return (Y);
            }    // final accept of Y
          }
          X = k4 + Dk;
        } else {
          W = gen.raw();
          if (U < p5) {                                  // expon. tail left
            Dk = (int) (1.0 - Math.log(W) / ll);
            if ((X = k1 - Dk) < 0) {
              continue;
            }          // 0 <= X <= k1 - 1
View Full Code Here

TOP

Related Classes of org.apache.mahout.math.jet.random.engine.RandomEngine

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.