// compute the test set error using m=1 (Single Input Error)
errorOne = new ForestPredictions(test.size(), nblabels);
if (oobM < oobOne) {
forestM.classify(test, new MultiCallback(testError, treeError));
forestOne.classify(test, errorOne);
} else {
forestOne.classify(test, new MultiCallback(testError, treeError, errorOne));
}
sumTestErr += ErrorEstimate.errorRate(testLabels, testError.computePredictions(rng));
sumOneErr += ErrorEstimate.errorRate(testLabels, errorOne.computePredictions(rng));
sumTreeErr += treeError.meanTreeError();