Package org.apache.mahout.classifier.bayes.datastore

Examples of org.apache.mahout.classifier.bayes.datastore.InMemoryBayesDatastore


   
    if (params.get("dataSource").equals("hdfs")) {
      if (params.get("classifierType").equalsIgnoreCase("bayes")) {
        log.info("Testing Bayes Classifier");
        algorithm = new BayesAlgorithm();
        datastore = new InMemoryBayesDatastore(params);
      } else if (params.get("classifierType").equalsIgnoreCase("cbayes")) {
        log.info("Testing Complementary Bayes Classifier");
        algorithm = new CBayesAlgorithm();
        datastore = new InMemoryBayesDatastore(params);
      } else {
        throw new IllegalArgumentException("Unrecognized classifier type: " + params.get("classifierType"));
      }
     
    } else if (params.get("dataSource").equals("hbase")) {
View Full Code Here


    String dataSource = (String) cmdLine.getValue(dataSourceOpt);
    if (dataSource.equals("hdfs")) {
      if (classifierType.equalsIgnoreCase("bayes")) {
        log.info("Using Bayes Classifier");
        algorithm = new BayesAlgorithm();
        datastore = new InMemoryBayesDatastore(params);
      } else if (classifierType.equalsIgnoreCase("cbayes")) {
        log.info("Using Complementary Bayes Classifier");
        algorithm = new CBayesAlgorithm();
        datastore = new InMemoryBayesDatastore(params);
      } else {
        throw new IllegalArgumentException("Unrecognized classifier type: " + classifierType);
      }
     
    } else if (dataSource.equals("hbase")) {
View Full Code Here

 
  @Override
  protected void setUp() throws Exception {
    super.setUp();
    algorithm = new BayesAlgorithm();
    store = new InMemoryBayesDatastore(new BayesParameters(1));
    // String[] labels = new String[]{"a", "b", "c", "d", "e"};
    // long[] labelCounts = new long[]{6, 20, 60, 100, 200};
    // String[] features = new String[]{"aa", "bb", "cc", "dd", "ee"};
    store.setSigmaJSigmaK(100.0);
   
View Full Code Here

  @Override
  protected void setUp() throws Exception {
    super.setUp();
    algorithm = new CBayesAlgorithm();
    store = new InMemoryBayesDatastore(new BayesParameters(1));
    // String[] labels = new String[]{"a", "b", "c", "d", "e"};
    // long[] labelCounts = new long[]{6, 20, 60, 100, 200};
    // String[] features = new String[]{"aa", "bb", "cc", "dd", "ee"};
    store.setSigmaJSigmaK(500.0);
   
View Full Code Here

     
      if (params.get("dataSource").equals("hdfs")) {
        if (params.get("classifierType").equalsIgnoreCase("bayes")) {
          log.info("Testing Bayes Classifier");
          algorithm = new BayesAlgorithm();
          datastore = new InMemoryBayesDatastore(params);
        } else if (params.get("classifierType").equalsIgnoreCase("cbayes")) {
          log.info("Testing Complementary Bayes Classifier");
          algorithm = new CBayesAlgorithm();
          datastore = new InMemoryBayesDatastore(params);
        } else {
          throw new IllegalArgumentException("Unrecognized classifier type: " + params.get("classifierType"));
        }
       
      } else if (params.get("dataSource").equals("hbase")) {
View Full Code Here

    params.set("defaultCat", "unknown");
    params.set("encoding", "UTF-8");
    params.set("alpha_i", "1.0");
   
    Algorithm algorithm = new BayesAlgorithm();
    Datastore datastore = new InMemoryBayesDatastore(params);
    ClassifierContext classifier = new ClassifierContext(algorithm, datastore);
    classifier.initialize();
    ResultAnalyzer resultAnalyzer = new ResultAnalyzer(classifier.getLabels(), params.get("defaultCat"));
   
    for (String[] entry : ClassifierData.DATA) {
View Full Code Here

    params.set("defaultCat", "unknown");
    params.set("encoding", "UTF-8");
    params.set("alpha_i", "1.0");
   
    Algorithm algorithm = new CBayesAlgorithm();
    Datastore datastore = new InMemoryBayesDatastore(params);
    ClassifierContext classifier = new ClassifierContext(algorithm, datastore);
    classifier.initialize();
    ResultAnalyzer resultAnalyzer = new ResultAnalyzer(classifier.getLabels(), params.get("defaultCat"));
    for (String[] entry : ClassifierData.DATA) {
      List<String> document = new NGrams(entry[1], Integer.parseInt(params.get("gramSize")))
View Full Code Here

     
      if (params.get("dataSource").equals("hdfs")) {
        if (params.get("classifierType").equalsIgnoreCase("bayes")) {
          log.info("Testing Bayes Classifier");
          algorithm = new BayesAlgorithm();
          datastore = new InMemoryBayesDatastore(params);
        } else if (params.get("classifierType").equalsIgnoreCase("cbayes")) {
          log.info("Testing Complementary Bayes Classifier");
          algorithm = new CBayesAlgorithm();
          datastore = new InMemoryBayesDatastore(params);
        } else {
          throw new IllegalArgumentException("Unrecognized classifier type: " + params.get("classifierType"));
        }
       
      } else if (params.get("dataSource").equals("hbase")) {
View Full Code Here

   
    if (params.get("dataSource").equals("hdfs")) {
      if (params.get("classifierType").equalsIgnoreCase("bayes")) {
        log.info("Testing Bayes Classifier");
        algorithm = new BayesAlgorithm();
        datastore = new InMemoryBayesDatastore(params);
      } else if (params.get("classifierType").equalsIgnoreCase("cbayes")) {
        log.info("Testing Complementary Bayes Classifier");
        algorithm = new CBayesAlgorithm();
        datastore = new InMemoryBayesDatastore(params);
      } else {
        throw new IllegalArgumentException("Unrecognized classifier type: " + params.get("classifierType"));
      }
     
    } else if (params.get("dataSource").equals("hbase")) {
View Full Code Here

    params.set("defaultCat", "unknown");
    params.set("encoding", "UTF-8");
    params.set("alpha_i", "1.0");
   
    Algorithm algorithm = new BayesAlgorithm();
    Datastore datastore = new InMemoryBayesDatastore(params);
    ClassifierContext classifier = new ClassifierContext(algorithm, datastore);
    classifier.initialize();
    ResultAnalyzer resultAnalyzer = new ResultAnalyzer(classifier.getLabels(), params.get("defaultCat"));
   
    for (String[] entry : ClassifierData.DATA) {
View Full Code Here

TOP

Related Classes of org.apache.mahout.classifier.bayes.datastore.InMemoryBayesDatastore

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.