Package org.apache.mahout.cf.taste.impl.similarity

Examples of org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity


    RecommenderEvaluator evaluator =
      new AverageAbsoluteDifferenceRecommenderEvaluator();
    RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
        UserNeighborhood neighborhood =
          new NearestNUserNeighborhood(100, similarity, model);
        return new GenericUserBasedRecommender(model, neighborhood, similarity);
      }
    };
View Full Code Here


  private GroupLensDataModelIntro() {
  }

  public static void main(String[] args) throws Exception {
    DataModel model = new GroupLensDataModel(new File("ratings.dat"));
    UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
    UserNeighborhood neighborhood =
      new NearestNUserNeighborhood(100, similarity, model);
    Recommender recommender =
      new GenericUserBasedRecommender(model, neighborhood, similarity);
    LoadEvaluator.runLoad(recommender);
View Full Code Here

      new AverageAbsoluteDifferenceRecommenderEvaluator();
    // Build the same recommender for testing that we did last time:
    RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
        UserNeighborhood neighborhood =
          new NearestNUserNeighborhood(2, similarity, model);
        return new GenericUserBasedRecommender(model, neighborhood, similarity);
      }
    };
View Full Code Here

    RecommenderEvaluator evaluator =
      new AverageAbsoluteDifferenceRecommenderEvaluator();
    RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
        UserNeighborhood neighborhood =
          new NearestNUserNeighborhood(10, similarity, model);
        return new GenericUserBasedRecommender(model, neighborhood, similarity);
      }
    };
View Full Code Here

      new GenericRecommenderIRStatsEvaluator();
    // Build the same recommender for testing that we did last time:
    RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
        UserNeighborhood neighborhood =
          new NearestNUserNeighborhood(2, similarity, model);
        return new GenericUserBasedRecommender(model, neighborhood, similarity);
      }
    };
View Full Code Here

    doTestLoad(recommender, 60);
  }

  public void testItemLoad() throws Exception {
    DataModel model = createModel();
    ItemSimilarity itemSimilarity = new PearsonCorrelationSimilarity(model);
    Recommender recommender = new CachingRecommender(new GenericItemBasedRecommender(model, itemSimilarity));
    doTestLoad(recommender, 240);
  }
View Full Code Here

    doTestLoad(recommender, 240);
  }

  public void testUserLoad() throws Exception {
    DataModel model = createModel();
    UserSimilarity userSimilarity = new PearsonCorrelationSimilarity(model);
    UserNeighborhood neighborhood = new NearestNUserNeighborhood(10, userSimilarity, model);
    Recommender recommender =
        new CachingRecommender(new GenericUserBasedRecommender(model, neighborhood, userSimilarity));
    doTestLoad(recommender, 40);
  }
View Full Code Here

            new Double[][] {
                    {0.1},
                    {0.2, 0.6},
                    {0.4, 0.9},
            });
    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> recommended = recommender.recommend(1, 1);
    assertNotNull(recommended);
    assertEquals(0, recommended.size());
View Full Code Here

                    {0.4, 0.4, 0.5, 0.9},
                    {0.1, 0.4, 0.5, 0.8, 0.9, 1.0},
                    {0.2, 0.3, 0.6, 0.7, 0.1, 0.2},
            });

    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> fewRecommended = recommender.recommend(1, 2);
    List<RecommendedItem> moreRecommended = recommender.recommend(1, 4);
    for (int i = 0; i < fewRecommended.size(); i++) {
View Full Code Here

                    {0.1, 0.2},
                    {0.2, 0.3, 0.3, 0.6},
                    {0.4, 0.4, 0.5, 0.9},
            });

    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> originalRecommended = recommender.recommend(1, 2);
    List<RecommendedItem> rescoredRecommended =
        recommender.recommend(1, 2, new ReversingRescorer<Long>());
View Full Code Here

TOP

Related Classes of org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.