n.setInput(this.con2node);
n.setBroadcastInputs(this.con2node);
// if the node represents a bulk iteration, we recursively translate the data flow now
if (n instanceof BulkIterationNode) {
final BulkIterationNode iterNode = (BulkIterationNode) n;
final BulkIterationBase<?> iter = iterNode.getIterationContract();
// pass a copy of the no iterative part into the iteration translation,
// in case the iteration references its closure
HashMap<Operator<?>, OptimizerNode> closure = new HashMap<Operator<?>, OptimizerNode>(con2node);
// first, recursively build the data flow for the step function
final GraphCreatingVisitor recursiveCreator = new GraphCreatingVisitor(this, true,
iterNode.getDegreeOfParallelism(), closure);
BulkPartialSolutionNode partialSolution = null;
iter.getNextPartialSolution().accept(recursiveCreator);
partialSolution = (BulkPartialSolutionNode) recursiveCreator.con2node.get(iter.getPartialSolution());
OptimizerNode rootOfStepFunction = recursiveCreator.con2node.get(iter.getNextPartialSolution());
if (partialSolution == null) {
throw new CompilerException("Error: The step functions result does not depend on the partial solution.");
}
OptimizerNode terminationCriterion = null;
if (iter.getTerminationCriterion() != null) {
terminationCriterion = recursiveCreator.con2node.get(iter.getTerminationCriterion());
// no intermediate node yet, traverse from the termination criterion to build the missing parts
if (terminationCriterion == null) {
iter.getTerminationCriterion().accept(recursiveCreator);
terminationCriterion = recursiveCreator.con2node.get(iter.getTerminationCriterion());
}
}
iterNode.setPartialSolution(partialSolution);
iterNode.setNextPartialSolution(rootOfStepFunction, terminationCriterion);
// go over the contained data flow and mark the dynamic path nodes
StaticDynamicPathIdentifier identifier = new StaticDynamicPathIdentifier(iterNode.getCostWeight());
rootOfStepFunction.accept(identifier);
if(terminationCriterion != null){
terminationCriterion.accept(identifier);
}
}
else if (n instanceof WorksetIterationNode) {
final WorksetIterationNode iterNode = (WorksetIterationNode) n;
final DeltaIterationBase<?, ?> iter = iterNode.getIterationContract();
// we need to ensure that both the next-workset and the solution-set-delta depend on the workset. One check is for free
// during the translation, we do the other check here as a pre-condition
{
WorksetFinder wsf = new WorksetFinder();
iter.getNextWorkset().accept(wsf);
if (!wsf.foundWorkset) {
throw new CompilerException("In the given program, the next workset does not depend on the workset. This is a prerequisite in delta iterations.");
}
}
// calculate the closure of the anonymous function
HashMap<Operator<?>, OptimizerNode> closure = new HashMap<Operator<?>, OptimizerNode>(con2node);
// first, recursively build the data flow for the step function
final GraphCreatingVisitor recursiveCreator = new GraphCreatingVisitor(this, true, iterNode.getDegreeOfParallelism(), closure);
// descend from the solution set delta. check that it depends on both the workset
// and the solution set. If it does depend on both, this descend should create both nodes
iter.getSolutionSetDelta().accept(recursiveCreator);
final WorksetNode worksetNode = (WorksetNode) recursiveCreator.con2node.get(iter.getWorkset());
if (worksetNode == null) {
throw new CompilerException("In the given program, the solution set delta does not depend on the workset. This is a prerequisite in delta iterations.");
}
iter.getNextWorkset().accept(recursiveCreator);
SolutionSetNode solutionSetNode = (SolutionSetNode) recursiveCreator.con2node.get(iter.getSolutionSet());
if (solutionSetNode == null || solutionSetNode.getOutgoingConnections() == null || solutionSetNode.getOutgoingConnections().isEmpty()) {
solutionSetNode = new SolutionSetNode((SolutionSetPlaceHolder<?>) iter.getSolutionSet(), iterNode);
}
else {
for (PactConnection conn : solutionSetNode.getOutgoingConnections()) {
OptimizerNode successor = conn.getTarget();
if (successor.getClass() == MatchNode.class) {
// find out which input to the match the solution set is
MatchNode mn = (MatchNode) successor;
if (mn.getFirstPredecessorNode() == solutionSetNode) {
mn.makeJoinWithSolutionSet(0);
} else if (mn.getSecondPredecessorNode() == solutionSetNode) {
mn.makeJoinWithSolutionSet(1);
} else {
throw new CompilerException();
}
}
else if (successor.getClass() == CoGroupNode.class) {
CoGroupNode cg = (CoGroupNode) successor;
if (cg.getFirstPredecessorNode() == solutionSetNode) {
cg.makeCoGroupWithSolutionSet(0);
} else if (cg.getSecondPredecessorNode() == solutionSetNode) {
cg.makeCoGroupWithSolutionSet(1);
} else {
throw new CompilerException();
}
}
else {
throw new CompilerException("Error: The only operations allowed on the solution set are Join and CoGroup.");
}
}
}
final OptimizerNode nextWorksetNode = recursiveCreator.con2node.get(iter.getNextWorkset());
final OptimizerNode solutionSetDeltaNode = recursiveCreator.con2node.get(iter.getSolutionSetDelta());
// set the step function nodes to the iteration node
iterNode.setPartialSolution(solutionSetNode, worksetNode);
iterNode.setNextPartialSolution(solutionSetDeltaNode, nextWorksetNode);
// go over the contained data flow and mark the dynamic path nodes
StaticDynamicPathIdentifier pathIdentifier = new StaticDynamicPathIdentifier(iterNode.getCostWeight());
nextWorksetNode.accept(pathIdentifier);
iterNode.getSolutionSetDelta().accept(pathIdentifier);
}
}