Package org.apache.commons.math.optimization.fitting

Examples of org.apache.commons.math.optimization.fitting.PolynomialFitter$ParametricPolynomial


      if (!polyDegreeDialog.isCancelled()) {
        setDegree(polyDegreeDialog.getDegree());

        final AbstractLeastSquaresOptimizer optimizer = new LevenbergMarquardtOptimizer();

        final PolynomialFitter fitter = new PolynomialFitter(
            getDegree(), optimizer);

        model = new IModel() {
          boolean interrupted = false;
          List<ValidObservation> fit;
          List<ValidObservation> residuals;
          PolynomialFunction function;
          // ICoordSource coordSrc = JDCoordSource.instance;
          Map<String, String> functionStrMap = new LinkedHashMap<String, String>();
          double aic = Double.NaN;
          double bic = Double.NaN;

          @Override
          public String getDescription() {
            return LocaleProps
                .get("MODEL_INFO_POLYNOMIAL_DEGREE_DESC")
                + degree
                + " for "
                + obs.get(0).getBand()
                + " series";
          }

          @Override
          public List<ValidObservation> getFit() {
            return fit;
          }

          @Override
          public List<ValidObservation> getResiduals() {
            return residuals;
          }

          @Override
          public String getKind() {
            return LocaleProps.get("ANALYSIS_MENU_POLYNOMIAL_FIT");
          }

          @Override
          public List<PeriodFitParameters> getParameters() {
            // None for a polynomial fit.
            return null;
          }

          @Override
          public boolean hasFuncDesc() {
            return true;
          }

          public String toFitMetricsString() throws AlgorithmError {
            String strRepr = functionStrMap
                .get("MODEL_INFO_FIT_METRICS_TITLE");

            // DecimalFormat fmt = NumericPrecisionPrefs
            // .getOtherOutputFormat();

            // List<Double> derivs = new ArrayList<Double>();

            if (strRepr == null) {
              // Goodness of fit.
              strRepr = "RMS: "
                  + NumericPrecisionPrefs
                      .formatOther(optimizer.getRMS());

              // Akaike and Bayesean Information Criteria.
              if (aic != Double.NaN && bic != Double.NaN) {
                strRepr += "\nAIC: "
                    + NumericPrecisionPrefs
                        .formatOther(aic);
                strRepr += "\nBIC: "
                    + NumericPrecisionPrefs
                        .formatOther(bic);
              }
            }

            return strRepr;
          }

          // TODO: consider analytic approaches

          // Return a string representation of the extreme magnitude
          // (numerical opposite of magnitude) generated by the
          // function.
          private String toExtremumString(String titleKey,
              GoalType goal) throws AlgorithmError {

            double min = obs.get(0).getJD() - zeroPoint;
            double max = obs.get(obs.size() - 1).getJD()
                - zeroPoint;

            IExtremaFinder finder = new ApacheCommonsExtremaFinder(
                function, goal, min, max, zeroPoint);
            finder.execute();

            double extremeMag = finder.getExtremeMag();

            String strRepr = String.format("JD: %s, Mag: %s",
                NumericPrecisionPrefs.formatTime(finder
                    .getExtremeTime()),
                NumericPrecisionPrefs.formatMag(extremeMag));

            // Is the extremum within a reasonable range? If not,
            // set it to null.
            if (strRepr != null) {
              if (goal == GoalType.MAXIMIZE) {
                double maxMag = getNumericallyMaximumMagnitude();
                if (extremeMag > maxMag) {
                  strRepr = null;
                }
              } else if (goal == GoalType.MINIMIZE) {
                double minMag = getNumericallyMinimumMagnitude();
                if (extremeMag < minMag) {
                  strRepr = null;
                }
              }
            }

            return strRepr;
          }

          // Return a string representation of the minimum magnitude
          // (numerical maximum) generated by the function.
          private String toMinimaString() throws AlgorithmError {
            return toExtremumString("MODEL_INFO_MINIMA_TITLE",
                GoalType.MAXIMIZE);
          }

          // Return a string representation of the maximum magnitude
          // (numerical minimum) generated by the function.
          private String toMaximaString() throws AlgorithmError {
            return toExtremumString("MODEL_INFO_MAXIMA_TITLE",
                GoalType.MINIMIZE);
          }

          // Return the magnitude that is numerically the smallest,
          // rather than the minimum in terms of brightness.
          private double getNumericallyMinimumMagnitude() {
            double min = obs.get(0).getMag();

            for (ValidObservation ob : obs) {
              double mag = ob.getMag();
              if (mag < min) {
                min = mag;
              }
            }

            return min;
          }

          // Return the magnitude that is numerically the largest,
          // rather than the maximum in terms of brightness.
          private double getNumericallyMaximumMagnitude() {
            double max = obs.get(0).getMag();

            for (ValidObservation ob : obs) {
              double mag = ob.getMag();
              if (mag > max) {
                max = mag;
              }
            }

            return max;
          }

          public String toExcelString() {
            String strRepr = functionStrMap.get(LocaleProps
                .get("MODEL_INFO_EXCEL_TITLE"));

            if (strRepr == null) {
              strRepr = "=SUM(";

              double[] coeffs = function.getCoefficients();
              for (int i = coeffs.length - 1; i >= 1; i--) {
                strRepr += coeffs[i];
                strRepr += "*(A1-" + zeroPoint + ")^" + i
                    + ",\n";
              }
              strRepr += coeffs[0] + ")";
            }

            return strRepr;
          }

          public String toRString() {
            String strRepr = functionStrMap.get(LocaleProps
                .get("MODEL_INFO_R_TITLE"));

            if (strRepr == null) {
              strRepr = "model <- function(t) ";

              double[] coeffs = function.getCoefficients();
              for (int i = coeffs.length - 1; i >= 1; i--) {
                strRepr += coeffs[i];
                strRepr += "*(t-" + zeroPoint + ")^" + i
                    + " +\n";
              }
              strRepr += coeffs[0];
            }

            return strRepr;
          }

          @Override
          public ContinuousModelFunction getModelFunction() {
            // UnivariateRealFunction func = new
            // UnivariateRealFunction() {
            // @Override
            // public double value(double x)
            // throws FunctionEvaluationException {
            // double y = 0;
            // double[] coeffs = function.getCoefficients();
            // for (int i = coeffs.length - 1; i >= 1; i--) {
            // y += coeffs[i] * Math.pow(x, i);
            // }
            // y += coeffs[0];
            // return y;
            // }
            // };

            return new ContinuousModelFunction(function, fit,
                zeroPoint);
          }

          // An alternative implementation for getModelFunction() that
          // uses Horner's method to avoid exponentiation.
          public UnivariateRealFunction getModelFunctionHorner() {
            UnivariateRealFunction func = new UnivariateRealFunction() {
              @Override
              public double value(double x)
                  throws FunctionEvaluationException {
                // Compute the value of the polynomial for x via
                // Horner's method.
                double y = 0;
                double[] coeffs = function.getCoefficients();
                for (double coeff : coeffs) {
                  y = y * x + coeff;
                }
                return y;
              }
            };

            return func;
          }

          @Override
          public void execute() throws AlgorithmError {

            for (int i = 0; i < obs.size() && !interrupted; i++) {
              ValidObservation ob = obs.get(i);
              fitter.addObservedPoint(1.0,
                  ob.getJD() - zeroPoint, ob.getMag());
            }

            if (!interrupted) {
              try {
                function = fitter.fit();

                fit = new ArrayList<ValidObservation>();
                residuals = new ArrayList<ValidObservation>();
                double sumSqResiduals = 0;

View Full Code Here


     * @param yDegree Degree of the polynomial fitting functions along the
     * y-dimension.
     */
    public SmoothingPolynomialBicubicSplineInterpolator(int xDegree,
                                                        int yDegree) {
        xFitter = new PolynomialFitter(xDegree, new GaussNewtonOptimizer(false));
        yFitter = new PolynomialFitter(yDegree, new GaussNewtonOptimizer(false));
    }
View Full Code Here

    this.data.add(new RTs(RT, RT2));
  }

  private PolynomialFunction getPolynomialFunction() {
    Collections.sort(data, new RTs());
    PolynomialFitter fitter = new PolynomialFitter(3,
        new GaussNewtonOptimizer(true));
    for (RTs rt : data) {
      fitter.addObservedPoint(1, rt.RT, rt.RT2);
    }
    try {
      return fitter.fit();

    } catch (Exception ex) {
      return null;
    }
  }
View Full Code Here

    for (RTs rt : data) {
      xval[i] = rt.RT;
      yval[i++] = rt.RT2;
    }

    PolynomialFitter fitter = new PolynomialFitter(3,
        new GaussNewtonOptimizer(true));
    for (RTs rt : data) {
      fitter.addObservedPoint(1, rt.RT, rt.RT2);
    }
    try {
      return fitter.fit();

    } catch (Exception ex) {
      return null;
    }
  }
View Full Code Here

    int degree = 3;
    if (linear) {
      degree = 1;
    }

    PolynomialFitter fitter = new PolynomialFitter(degree,
        new GaussNewtonOptimizer(true));
    for (int i = 0; i < data.size(); i++) {
      AlignStructMol point = data.get(i);
      if (point.ransacMaybeInLiers) {
        points.add(point);
        fitter.addObservedPoint(1, point.RT, point.RT2);
      }
    }
    try {
      PolynomialFunction function = fitter.fit();
      for (AlignStructMol point : data) {
        double y = point.RT2;
        double bestY = function.value(point.RT);
        if (Math.abs(y - bestY) < t) {
          point.ransacAlsoInLiers = true;
View Full Code Here

    int degree = 2;
    if (linear) {
      degree = 1;
    }

    PolynomialFitter fitter = new PolynomialFitter(degree,
        new GaussNewtonOptimizer(true));
    for (RTs rt : data) {
      fitter.addObservedPoint(1, rt.RT, rt.RT2);
    }
    try {
      return fitter.fit();

    } catch (Exception ex) {
      return null;
    }
  }
View Full Code Here

TOP

Related Classes of org.apache.commons.math.optimization.fitting.PolynomialFitter$ParametricPolynomial

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.