Package org.apache.commons.math.optimization

Examples of org.apache.commons.math.optimization.LeastSquaresConverter


      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 });
      NelderMead optimizer = new NelderMead();
View Full Code Here


      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 }, new double[] { 10.0, 0.1 });
      NelderMead optimizer = new NelderMead();
View Full Code Here

      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 }, new Array2DRowRealMatrix(new double [][] {
          { 1.0, 1.2 }, { 1.2, 2.0 }
View Full Code Here

      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 });
      NelderMead optimizer = new NelderMead();
View Full Code Here

      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 }, new double[] { 10.0, 0.1 });
      NelderMead optimizer = new NelderMead();
View Full Code Here

      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 }, new Array2DRowRealMatrix(new double [][] {
          { 1.0, 1.2 }, { 1.2, 2.0 }
View Full Code Here

      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 });
      NelderMead optimizer = new NelderMead();
View Full Code Here

      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 }, new double[] { 10.0, 0.1 });
      NelderMead optimizer = new NelderMead();
View Full Code Here

      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 }, new Array2DRowRealMatrix(new double [][] {
          { 1.0, 1.2 }, { 1.2, 2.0 }
View Full Code Here

TOP

Related Classes of org.apache.commons.math.optimization.LeastSquaresConverter

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.