Package org.apache.commons.math.fraction

Examples of org.apache.commons.math.fraction.BigFraction


        }
    }

    public void testBigFractionConverter() {
        BigFraction[][] bfData = {
                { new BigFraction(1), new BigFraction(2), new BigFraction(3) },
                { new BigFraction(2), new BigFraction(5), new BigFraction(3) },
                { new BigFraction(1), new BigFraction(0), new BigFraction(8) }
        };
        FieldMatrix<BigFraction> m = new Array2DRowFieldMatrix<BigFraction>(bfData, false);
        RealMatrix converted = MatrixUtils.bigFractionMatrixToRealMatrix(m);
        RealMatrix reference = new Array2DRowRealMatrix(testData, false);
        assertEquals(0.0, converted.subtract(reference).getNorm(), 0.0);
View Full Code Here


            // build the P matrix elements from Taylor series formulas
            final BigFraction[] pI = pData[i];
            final int factor = -(i + 1);
            int aj = factor;
            for (int j = 0; j < pI.length; ++j) {
                pI[j] = new BigFraction(aj * (j + 2));
                aj *= factor;
            }
        }

        return new Array2DRowFieldMatrix<BigFraction>(pData, false);
View Full Code Here

            /** {@inheritDoc} */
            public BigFraction[] generate(int k) {
                return new BigFraction[] {
                        BigFraction.ZERO,
                        BigFraction.TWO,
                        new BigFraction(2 * k)};
            }
        });
    }
View Full Code Here

                new RecurrenceCoefficientsGenerator() {
            /** {@inheritDoc} */
            public BigFraction[] generate(int k) {
                final int kP1 = k + 1;
                return new BigFraction[] {
                        new BigFraction(2 * k + 1, kP1),
                        new BigFraction(-1, kP1),
                        new BigFraction(k, kP1)};
            }
        });
    }
View Full Code Here

            /** {@inheritDoc} */
            public BigFraction[] generate(int k) {
                final int kP1 = k + 1;
                return new BigFraction[] {
                        BigFraction.ZERO,
                        new BigFraction(k + kP1, kP1),
                        new BigFraction(k, kP1)};
            }
        });
    }
View Full Code Here

            startK += k;

            // Pk+1(X) = (a[0] + a[1] X) Pk(X) - a[2] Pk-1(X)
            BigFraction[] ai = generator.generate(k);

            BigFraction ck     = coefficients.get(startK);
            BigFraction ckm1   = coefficients.get(startKm1);

            // degree 0 coefficient
            coefficients.add(ck.multiply(ai[0]).subtract(ckm1.multiply(ai[2])));

            // degree 1 to degree k-1 coefficients
            for (int i = 1; i < k; ++i) {
                final BigFraction ckPrev = ck;
                ck     = coefficients.get(startK + i);
                ckm1   = coefficients.get(startKm1 + i);
                coefficients.add(ck.multiply(ai[0]).add(ckPrev.multiply(ai[1])).subtract(ckm1.multiply(ai[2])));
            }

            // degree k coefficient
            final BigFraction ckPrev = ck;
            ck = coefficients.get(startK + k);
            coefficients.add(ck.multiply(ai[0]).add(ckPrev.multiply(ai[1])));

            // degree k+1 coefficient
            coefficients.add(ck.multiply(ai[1]));

        }
View Full Code Here

        }
    }

    public void testBigFractionConverter() {
        BigFraction[][] bfData = {
                { new BigFraction(1), new BigFraction(2), new BigFraction(3) },
                { new BigFraction(2), new BigFraction(5), new BigFraction(3) },
                { new BigFraction(1), new BigFraction(0), new BigFraction(8) }
        };
        FieldMatrix<BigFraction> m = new Array2DRowFieldMatrix<BigFraction>(bfData, false);
        RealMatrix converted = MatrixUtils.bigFractionMatrixToRealMatrix(m);
        RealMatrix reference = new Array2DRowRealMatrix(testData, false);
        assertEquals(0.0, converted.subtract(reference).getNorm(), 0.0);
View Full Code Here

        }
    }

    public void testBigFractionConverter() {
        BigFraction[][] bfData = {
                { new BigFraction(1), new BigFraction(2), new BigFraction(3) },
                { new BigFraction(2), new BigFraction(5), new BigFraction(3) },
                { new BigFraction(1), new BigFraction(0), new BigFraction(8) }
        };
        FieldMatrix<BigFraction> m = new Array2DRowFieldMatrix<BigFraction>(bfData, false);
        RealMatrix converted = MatrixUtils.bigFractionMatrixToRealMatrix(m);
        RealMatrix reference = new Array2DRowRealMatrix(testData, false);
        assertEquals(0.0, converted.subtract(reference).getNorm(), 0.0);
View Full Code Here

            // build the P matrix elements from Taylor series formulas
            final BigFraction[] pI = pData[i];
            final int factor = -(i + 1);
            int aj = factor;
            for (int j = 0; j < pI.length; ++j) {
                pI[j] = new BigFraction(aj * (j + 2));
                aj *= factor;
            }
        }

        return new Array2DRowFieldMatrix<BigFraction>(pData, false);
View Full Code Here

            /** {@inheritDoc} */
            public BigFraction[] generate(int k) {
                return new BigFraction[] {
                        BigFraction.ZERO,
                        BigFraction.TWO,
                        new BigFraction(2 * k)};
            }
        });
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math.fraction.BigFraction

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.