Package org.apache.commons.math.distribution

Examples of org.apache.commons.math.distribution.PoissonDistribution

@version $Revision: 920852 $ $Date: 2010-03-09 13:53:44 +0100 (mar. 09 mars 2010) $

   * @param numWords
   *          E[count] for each word
   */
  private Vector generateRandomDoc(int numWords, double sparsity) throws MathException {
    Vector v = new DenseVector(numWords);
    PoissonDistribution dist = new PoissonDistributionImpl(sparsity);
    for (int i = 0; i < numWords; i++) {
      // random integer
      v.setQuick(i, dist.inverseCumulativeProbability(random.nextDouble()) + 1);
    }
    return v;
  }
View Full Code Here


   * @param numWords int number of words in the vocabulary
   * @param numWords E[count] for each word
   */
  private RandomAccessSparseVector generateRandomDoc(int numWords, double sparsity) throws MathException {
    RandomAccessSparseVector v = new RandomAccessSparseVector(numWords,(int)(numWords * sparsity));
    PoissonDistribution dist = new PoissonDistributionImpl(sparsity);
    for (int i = 0; i < numWords; i++) {
      // random integer
      v.set(i,dist.inverseCumulativeProbability(random.nextDouble()) + 1);
    }
    return v;
  }
View Full Code Here

         *  Set up bins for chi-square test.
         *  Ensure expected counts are all at least minExpectedCount.
         *  Start with upper and lower tail bins.
         *  Lower bin = [0, lower); Upper bin = [upper, +inf).
         */
        PoissonDistribution poissonDistribution = new PoissonDistributionImpl(mean);
        int lower = 1;
        while (poissonDistribution.cumulativeProbability(lower - 1) * sampleSize < minExpectedCount) {
            lower++;
        }
        int upper = (int) (5 * mean)// Even for mean = 1, not much mass beyond 5
        while ((1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize < minExpectedCount) {
            upper--;
        }

        // Set bin width for interior bins.  For poisson, only need to look at end bins.
        int binWidth = 1;
        boolean widthSufficient = false;
        double lowerBinMass = 0;
        double upperBinMass = 0;
        while (!widthSufficient) {
            lowerBinMass = poissonDistribution.cumulativeProbability(lower, lower + binWidth - 1);
            upperBinMass = poissonDistribution.cumulativeProbability(upper - binWidth + 1, upper);
            widthSufficient = Math.min(lowerBinMass, upperBinMass) * sampleSize >= minExpectedCount;
            binWidth++;
        }

        /*
         *  Determine interior bin bounds.  Bins are
         *  [1, lower = binBounds[0]), [lower, binBounds[1]), [binBounds[1], binBounds[2]), ... ,
         *    [binBounds[binCount - 2], upper = binBounds[binCount - 1]), [upper, +inf)
         *
         */
        List<Integer> binBounds = new ArrayList<Integer>();
        binBounds.add(lower);
        int bound = lower + binWidth;
        while (bound < upper - binWidth) {
            binBounds.add(bound);
            bound += binWidth;
        }
        binBounds.add(bound);
        binBounds.add(upper);

        // Compute observed and expected bin counts
        final int binCount = binBounds.size() + 1;
        long[] observed = new long[binCount];
        double[] expected = new double[binCount];

        // Bottom bin
        observed[0] = 0;
        for (int i = 0; i < lower; i++) {
            observed[0] += frequency.getCount(i);
        }
        expected[0] = poissonDistribution.cumulativeProbability(lower - 1) * sampleSize;

        // Top bin
        observed[binCount - 1] = 0;
        for (int i = upper; i <= maxObservedValue; i++) {
            observed[binCount - 1] += frequency.getCount(i);
        }
        expected[binCount - 1] = (1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize;

        // Interior bins
        for (int i = 1; i < binCount - 1; i++) {
            observed[i] = 0;
            for (int j = binBounds.get(i - 1); j < binBounds.get(i); j++) {
                observed[i] += frequency.getCount(j);
            } // Expected count is (mass in [binBounds[i], binBounds[i+1])) * sampleSize
            expected[i] = (poissonDistribution.cumulativeProbability(binBounds.get(i) - 1) -
                poissonDistribution.cumulativeProbability(binBounds.get(i - 1) -1)) * sampleSize;
        }

        // Use chisquare test to verify that generated values are poisson(mean)-distributed
        ChiSquareTest chiSquareTest = new ChiSquareTestImpl();
        try {
View Full Code Here

  public static Object statPoisson(Object[] args, XelContext ctx) throws MathException{
    double x = CommonFns.toNumber(args[0]).doubleValue();
    double mean = CommonFns.toNumber(args[1]).doubleValue();
    boolean isCumulative = ((Boolean)args[2]).booleanValue();
    DistributionFactory factory = DistributionFactory.newInstance();
    PoissonDistribution pd = factory.createPoissonDistribution(mean);
    if(isCumulative)
      return UtilFns.validateNumber(pd.cumulativeProbability(x));
    else
      return UtilFns.validateNumber(pd.probability(x));
  }
View Full Code Here

   * @param numWords int number of words in the vocabulary
   * @param numWords E[count] for each word
   */
  private SparseVector generateRandomDoc(int numWords, double sparsity) throws MathException {
    SparseVector v = new SparseVector(numWords,(int)(numWords * sparsity));
    PoissonDistribution dist = new PoissonDistributionImpl(sparsity);
    for (int i = 0; i < numWords; i++) {
      // random integer
      v.set(i,dist.inverseCumulativeProbability(random.nextDouble()) + 1);
    }
    return v;
  }
View Full Code Here

   * @param numWords int number of words in the vocabulary
   * @param numWords E[count] for each word
   */
  private Vector generateRandomDoc(int numWords, double sparsity) throws MathException {
    Vector v = new DenseVector(numWords);
    PoissonDistribution dist = new PoissonDistributionImpl(sparsity);
    for (int i = 0; i < numWords; i++) {
      // random integer
      v.setQuick(i, dist.inverseCumulativeProbability(random.nextDouble()) + 1);
    }
    return v;
  }
View Full Code Here

         *  Set up bins for chi-square test.
         *  Ensure expected counts are all at least minExpectedCount.
         *  Start with upper and lower tail bins.
         *  Lower bin = [0, lower); Upper bin = [upper, +inf).
         */
        PoissonDistribution poissonDistribution = new PoissonDistributionImpl(mean);
        int lower = 1;
        while (poissonDistribution.cumulativeProbability(lower - 1) * sampleSize < minExpectedCount) {
            lower++;
        }
        int upper = (int) (5 * mean)// Even for mean = 1, not much mass beyond 5
        while ((1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize < minExpectedCount) {
            upper--;
        }

        // Set bin width for interior bins.  For poisson, only need to look at end bins.
        int binWidth = 1;
        boolean widthSufficient = false;
        double lowerBinMass = 0;
        double upperBinMass = 0;
        while (!widthSufficient) {
            lowerBinMass = poissonDistribution.cumulativeProbability(lower, lower + binWidth - 1);
            upperBinMass = poissonDistribution.cumulativeProbability(upper - binWidth + 1, upper);
            widthSufficient = FastMath.min(lowerBinMass, upperBinMass) * sampleSize >= minExpectedCount;
            binWidth++;
        }

        /*
         *  Determine interior bin bounds.  Bins are
         *  [1, lower = binBounds[0]), [lower, binBounds[1]), [binBounds[1], binBounds[2]), ... ,
         *    [binBounds[binCount - 2], upper = binBounds[binCount - 1]), [upper, +inf)
         *
         */
        List<Integer> binBounds = new ArrayList<Integer>();
        binBounds.add(lower);
        int bound = lower + binWidth;
        while (bound < upper - binWidth) {
            binBounds.add(bound);
            bound += binWidth;
        }
        binBounds.add(bound);
        binBounds.add(upper);

        // Compute observed and expected bin counts
        final int binCount = binBounds.size() + 1;
        long[] observed = new long[binCount];
        double[] expected = new double[binCount];

        // Bottom bin
        observed[0] = 0;
        for (int i = 0; i < lower; i++) {
            observed[0] += frequency.getCount(i);
        }
        expected[0] = poissonDistribution.cumulativeProbability(lower - 1) * sampleSize;

        // Top bin
        observed[binCount - 1] = 0;
        for (int i = upper; i <= maxObservedValue; i++) {
            observed[binCount - 1] += frequency.getCount(i);
        }
        expected[binCount - 1] = (1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize;

        // Interior bins
        for (int i = 1; i < binCount - 1; i++) {
            observed[i] = 0;
            for (int j = binBounds.get(i - 1); j < binBounds.get(i); j++) {
                observed[i] += frequency.getCount(j);
            } // Expected count is (mass in [binBounds[i], binBounds[i+1])) * sampleSize
            expected[i] = (poissonDistribution.cumulativeProbability(binBounds.get(i) - 1) -
                poissonDistribution.cumulativeProbability(binBounds.get(i - 1) -1)) * sampleSize;
        }

        // Use chisquare test to verify that generated values are poisson(mean)-distributed
        ChiSquareTest chiSquareTest = new ChiSquareTestImpl();
        try {
View Full Code Here

TOP

Related Classes of org.apache.commons.math.distribution.PoissonDistribution

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.