Package opennlp.tools.postag

Examples of opennlp.tools.postag.POSTaggerME$PosSequenceValidator


    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    FileInputStream posStream = new FileInputStream(
        new File(modelDir,"en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger =  new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    Parse[] results = ParserTool.parseLine("Who is the president of egypt ?", parser, 1);
    String[] context = atcg.getContext(results[0]);
    List<String> features = Arrays.asList(context);
    assertTrue(features.contains("qw=who"));
View Full Code Here


    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    InputStream posStream = new FileInputStream(
            new File(modelDir,"en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger =  new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    //<start id="att.answerTypeDemo"/>
    AnswerTypeContextGenerator atcg =
            new AnswerTypeContextGenerator(
                    new File(getWordNetDictionary().getAbsolutePath()));
View Full Code Here

    File posModelFile = new File( //<co id="opennlpPOS.co.tagger"/>
        getModelDir(), "en-pos-maxent.bin");
    FileInputStream posModelStream = new FileInputStream(posModelFile);
    POSModel model = new POSModel(posModelStream);
   
    POSTaggerME tagger = new POSTaggerME(model);
    String[] words = SimpleTokenizer.INSTANCE.tokenize( //<co id="opennlpPOS.co.tokenize"/>
        "The quick, red fox jumped over the lazy, brown dogs.");
    String[] result = tagger.tag(words);//<co id="opennlpPOS.co.dotag"/>
    for (int i=0 ; i < words.length; i++) {
      System.err.print(words[i] + "/" + result[i] + " ");
    }
    System.err.println("\n");
    /*
 
View Full Code Here

    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    FileInputStream posStream = new FileInputStream(
        new File(modelDir,"en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger =  new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    Parse[] results = ParserTool.parseLine("The Minnesota Twins , " +
            "the 1991 World Series Champions , are currently in third place .",
            parser, 1);
    Parse p = results[0];
View Full Code Here

        ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
        chunker = new ChunkerME(chunkerModel); //<co id="qqpp.chunker"/>
        InputStream posStream = new FileInputStream(
            new File(modelsDir,"en-pos-maxent.bin"));
        POSModel posModel = new POSModel(posStream);
        tagger =  new POSTaggerME(posModel); //<co id="qqpp.tagger"/>
        model = new DoccatModel(new FileInputStream( //<co id="qqpp.theModel"/>
            new File(modelDirectory,"en-answer.bin")))
            .getChunkerModel();
        probs = new double[model.getNumOutcomes()];
        atcg = new AnswerTypeContextGenerator(
View Full Code Here

    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    InputStream posStream = new FileInputStream(
        new File(modelsDir,"en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger =  new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    AnswerTypeContextGenerator actg = new AnswerTypeContextGenerator(new File(wordnetDir));
    //<start id="atc.train"/>
    AnswerTypeEventStream es = new AnswerTypeEventStream(trainFile,
            actg, parser);
View Full Code Here

    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    InputStream posStream = new FileInputStream(
        new File(modelsDir,"en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger =  new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    AnswerTypeContextGenerator actg = new AnswerTypeContextGenerator(wordnetDir);
    EventStream es = new AnswerTypeEventStream(eventFile,actg,parser);
    while(es.hasNext()) {
      System.out.println(es.next().toString());
View Full Code Here

        UimaUtil.BEAM_SIZE_PARAMETER);

    if (beamSize == null)
      beamSize = POSTaggerME.DEFAULT_BEAM_SIZE;

    this.posTagger = new POSTaggerME(model, beamSize, 0);
  }
View Full Code Here

  private int[] attachments;

  public Parser(ParserModel model, int beamSize, double advancePercentage) {
    this(model.getBuildModel(), model.getAttachModel(), model.getCheckModel(),
        new POSTaggerME(model.getParserTaggerModel()),
        new ChunkerME(model.getParserChunkerModel(),
        ChunkerME.DEFAULT_BEAM_SIZE,
        new ParserChunkerSequenceValidator(model.getParserChunkerModel()),
        new ChunkContextGenerator(ChunkerME.DEFAULT_BEAM_SIZE)),
        model.getHeadRules(),
View Full Code Here

  private int completeIndex;
  private int incompleteIndex;

  public Parser(ParserModel model, int beamSize, double advancePercentage) {
    this(model.getBuildModel(), model.getCheckModel(),
        new POSTaggerME(model.getParserTaggerModel(), 10, 0),
        new ChunkerME(model.getParserChunkerModel(),
            ChunkerME.DEFAULT_BEAM_SIZE,
            new ParserChunkerSequenceValidator(model.getParserChunkerModel()),
            new ChunkContextGenerator(ChunkerME.DEFAULT_BEAM_SIZE)),
            model.getHeadRules(), beamSize, advancePercentage);
View Full Code Here

TOP

Related Classes of opennlp.tools.postag.POSTaggerME$PosSequenceValidator

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.