Package opennlp.maxent

Examples of opennlp.maxent.Event


        }
      }
    }
    events = new Event[toks.size()];
    for (int ti = 0, tl = toks.size(); ti < tl; ti++) {
      events[ti] = new Event((String) outcomes.get(ti), cg.getContext(ti, toks, outcomes, prevTags));
    }
    for (int ti=0,tl=toks.size();ti<tl;ti++) {
      prevTags.put(toks.get(ti),outcomes.get(ti));
    }
  }
View Full Code Here


        ArrayList outcomes = (ArrayList)p.b;
        ArrayList tags = new ArrayList();
       
        for (int i=0; i<tokens.size(); i++) {
          String[] context = cg.getContext(i,tokens.toArray(),(String[]) tags.toArray(new String[tags.size()]),null);
          Event e = new Event((String)outcomes.get(i), context);
          tags.add(outcomes.get(i));
          elist.add(e);
        }
        s = br.readLine();
      }
    } catch (Exception e) { e.printStackTrace(); }
   
    Event[] events = new Event[elist.size()];
    for(int i=0; i<events.length; i++)
      events[i] = (Event)elist.get(i);
   
View Full Code Here

    return features;
  }

  private void addEvent(String outcome, Context np1) {
    List feats = getFeatures(np1);
    events.add(new Event(outcome, (String[]) feats.toArray(new String[feats.size()])));
  }
View Full Code Here

  public void trainModel() throws IOException {
    if (debugOn) {
      FileWriter writer = new FileWriter(modelName+".events");
      for (Iterator ei=events.iterator();ei.hasNext();) {
        Event e = (Event) ei.next();
        writer.write(e.toString()+"\n");
      }
      writer.close();
    }
    (new SuffixSensitiveGISModelWriter(GIS.trainModel(new CollectionEventStream(events),true),new File(modelName+modelExtension))).persist();
  }
View Full Code Here

    events = new Event[toks.size()];
    Object[] toksArray = toks.toArray();
    String[] tagsArray = (String[]) tags.toArray(new String[tags.size()]);
    String[] predsArray = (String[]) preds.toArray(new String[preds.size()]);
    for (int ei = 0, el = events.length; ei < el; ei++) {
      events[ei] = new Event((String) preds.get(ei), cg.getContext(ei,toksArray,tagsArray,predsArray));
    }
  }
View Full Code Here

            if (debugOn) {
              System.err.println(this +".retain: " + mention.getId() + " " + mention.toText() + " -> " + entityMention.getId() + " " + cde);
            }
            if (mention.getId() != -1 && entityMention.getId() == mention.getId()) {
              referentFound = true;
              events.add(new Event(SAME, (String[]) features.toArray(new String[features.size()])));
              de = cde;
              //System.err.println("MaxentResolver.retain: resolved at "+ei);
              distances.add(new Integer(ei));
            }
            else if (!pairedSampleSelection || (!nonReferentFound && useAsDifferentExample)) {
              nonReferentFound = true;
              events.add(new Event(DIFF, (String[]) features.toArray(new String[features.size()])));
            }
          //}
        }
        if (pairedSampleSelection && referentFound && nonReferentFound) {
          break;
View Full Code Here

    if (ResolverMode.TRAIN == mode) {
      if (debugOn) {
        System.err.println(this +" referential");
        FileWriter writer = new FileWriter(modelName+".events");
        for (Iterator ei=events.iterator();ei.hasNext();) {
          Event e = (Event) ei.next();
          writer.write(e.toString()+"\n");
        }
        writer.close();
      }
      (new SuffixSensitiveGISModelWriter(GIS.trainModel(new CollectionEventStream(events),100,10),new File(modelName+modelExtension))).persist();
      nonReferentialResolver.train();
View Full Code Here

            for (int ti = firstTrainingToken; ti <= lastTrainingToken; ti++) {
              Span tSpan = tokens[ti];
              int cStart = cSpan.getStart();
              for (int i = tSpan.getStart() + 1; i < tSpan.getEnd(); i++) {
                String[] context = cg.getContext(new ObjectIntPair(ctok, i - cStart));
                events.add(new Event(TokContextGenerator.NO_SPLIT, context));
              }
              if (tSpan.getEnd() != cSpan.getEnd()) {
                String[] context = cg.getContext(new ObjectIntPair(ctok, tSpan.getEnd() - cStart));
                events.add(new Event(TokContextGenerator.SPLIT, context));
              }
            }
          }
        }
      }
View Full Code Here

  public boolean hasNext() {
    return (eventIndex < events.size());
  }

  public Event nextEvent() {
    Event e = (Event) events.get(eventIndex);
    eventIndex++;
    if (eventIndex == events.size()) {
      events.clear();
      eventIndex = 0;
    }
View Full Code Here

          if (TokenizerME.alphaNumeric.matcher(spaceToks[tok]).matches()) {
            int lastIndex = sb.length() - 1;
            for (int id = 0; id < sb.length(); id++) {
              String[] context = cg.getContext(new ObjectIntPair(sb, id));
              if (id == lastIndex) {
                elist.add(new Event("T", context));
              }
              else {
                elist.add(new Event("F", context));
              }
            }
          }
        }
        s = br.readLine();
View Full Code Here

TOP

Related Classes of opennlp.maxent.Event

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.