Package net.nutch.searcher

Examples of net.nutch.searcher.Summary


    // TODO: check that phrases in the query are matched in the fragment

    Token[] tokens = getTokens(text);             // parse text to token array

    if (tokens.length == 0)
      return new Summary();

    String[] terms = query.getTerms();
    HashSet highlight = new HashSet();            // put query terms in table
    for (int i = 0; i < terms.length; i++)
      highlight.add(terms[i]);

    //
    // Create a SortedSet that ranks excerpts according to
    // how many query terms are present.  An excerpt is
    // a Vector full of Fragments and Highlights
    //
    SortedSet excerptSet = new TreeSet(new Comparator() {
        public int compare(Object o1, Object o2) {
            Excerpt excerpt1 = (Excerpt) o1;
            Excerpt excerpt2 = (Excerpt) o2;

            if (excerpt1 == null && excerpt2 != null) {
                return -1;
            } else if (excerpt1 != null && excerpt2 == null) {
                return 1;
            } else if (excerpt1 == null && excerpt2 == null) {
                return 0;
            }

            int numToks1 = excerpt1.numUniqueTokens();
            int numToks2 = excerpt2.numUniqueTokens();

            if (numToks1 < numToks2) {
                return -1;
            } else if (numToks1 == numToks2) {
                return excerpt1.numFragments() - excerpt2.numFragments();
            } else {
                return 1;
            }
        }
    }
        );

    //
    // Iterate through all terms in the document
    //
    int lastExcerptPos = 0;
    for (int i = 0; i < tokens.length; i++) {
      //
      // If we find a term that's in the query...
      //
      if (highlight.contains(tokens[i].termText())) {
        //
        // Start searching at a point SUM_CONTEXT terms back,
        // and move SUM_CONTEXT terms into the future.
        //
        int startToken = (i > SUM_CONTEXT) ? i-SUM_CONTEXT : 0;
        int endToken = Math.min(i+SUM_CONTEXT, tokens.length);
        int offset = tokens[startToken].startOffset();
        int j = startToken;

        //
        // Iterate from the start point to the finish, adding
        // terms all the way.  The end of the passage is always
        // SUM_CONTEXT beyond the last query-term.
        //
        Excerpt excerpt = new Excerpt();
        if (i != 0) {
            excerpt.add(new Summary.Ellipsis());
        }

        //
        // Iterate through as long as we're before the end of
        // the document and we haven't hit the max-number-of-items
        // -in-a-summary.
        //
        while ((j < endToken) && (j - startToken < SUM_LENGTH)) {
          //
          // Now grab the hit-element, if present
          //
          Token t = tokens[j];
          if (highlight.contains(t.termText())) {
            excerpt.addToken(t.termText());
            excerpt.add(new Fragment(text.substring(offset, t.startOffset())));
            excerpt.add(new Highlight(text.substring(t.startOffset(),t.endOffset())));
            offset = t.endOffset();
            endToken = Math.min(j+SUM_CONTEXT, tokens.length);
          }

          j++;
        }

        lastExcerptPos = endToken;

        //
        // We found the series of search-term hits and added
        // them (with intervening text) to the excerpt.  Now
        // we need to add the trailing edge of text.
        //
        // So if (j < tokens.length) then there is still trailing
        // text to add.  (We haven't hit the end of the source doc.)
        // Add the words since the last hit-term insert.
        //
        if (j < tokens.length) {
          excerpt.add(new Fragment(text.substring(offset,tokens[j].endOffset())));
        }

        //
        // Remember how many terms are in this excerpt
        //
        excerpt.setNumTerms(j - startToken);

        //
        // Store the excerpt for later sorting
        //
        excerptSet.add(excerpt);

        //
        // Start SUM_CONTEXT places away.  The next
        // search for relevant excerpts begins at i-SUM_CONTEXT
        //
        i = j+SUM_CONTEXT;
      }
    }

    //
    // If the target text doesn't appear, then we just
    // excerpt the first SUM_LENGTH words from the document.
    //
    if (excerptSet.size() == 0) {
        Excerpt excerpt = new Excerpt();
        int excerptLen = Math.min(SUM_LENGTH, tokens.length);
        lastExcerptPos = excerptLen;

        excerpt.add(new Fragment(text.substring(tokens[0].startOffset(), tokens[excerptLen-1].startOffset())));
        excerpt.setNumTerms(excerptLen);
        excerptSet.add(excerpt);
    }

    //
    // Now choose the best items from the excerpt set.
    // Stop when our Summary grows too large.
    //
    double tokenCount = 0;
    Summary s = new Summary();
    while (tokenCount <= SUM_LENGTH && excerptSet.size() > 0) {
        Excerpt excerpt = (Excerpt) excerptSet.last();
        excerptSet.remove(excerpt);

        double tokenFraction = (1.0 * excerpt.getNumTerms()) / excerpt.numFragments();
        for (Enumeration e = excerpt.elements(); e.hasMoreElements(); ) {
            Fragment f = (Fragment) e.nextElement();
            // Don't add fragments if it takes us over the max-limit
            if (tokenCount + tokenFraction <= SUM_LENGTH) {
                s.add(f);
            }
            tokenCount += tokenFraction;
        }
    }
   
    if (tokenCount > 0 && lastExcerptPos < tokens.length)
      s.add(new Ellipsis());
    return s;
  }
View Full Code Here

TOP

Related Classes of net.nutch.searcher.Summary

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.