Package joshua.discriminative.training.learning_algorithm

Examples of joshua.discriminative.training.learning_algorithm.DefaultPerceptron


        perceptronModel.put(baselineFeatName, 1.0);
        System.out.println("feature set size is " + perceptronModel.size());
      }else{
        System.out.println("In perceptron, should specify feature set");       
      }
      optimizer = new DefaultPerceptron(perceptron_sum_model, perceptron_avg_model,train_size, batch_update_size, converge_pass, init_gain, sigma, is_minimize_score);
      hgdl = new HGDiscriminativeLearner(optimizer,  new HashSet<String>(perceptronModel.keySet()));
      hgdl.reset_baseline_feat();
    }   
       
    //#####begin to do training
View Full Code Here


        DiscriminativeSupport.loadModel(initModelFile, perceptronModel, null);
        perceptronModel.put(baselineFeatName, 1.0);
      }else{
        System.out.println("In perceptron, should specify feature set");       
      }
      optimizer = new DefaultPerceptron(perceptronSumModel, perceptronAvgModel,trainSize, batchUpdateSize, convergePass, initGain, sigma, isMinimizeScore);
      ndl = new NBESTDiscriminativeLearner(optimizer,  new HashSet<String>(perceptronModel.keySet()));
      ndl.resetBaselineFeat();
   
   
    //TODO
View Full Code Here

TOP

Related Classes of joshua.discriminative.training.learning_algorithm.DefaultPerceptron

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.