DiscriminativeSupport.loadModel(initModelFile, crfModel, null);
else{
System.out.println("In crf, must specify feature set");
System.exit(0);
}
optimizer = new DefaultCRF(crfModel, trainSize, batchUpdateSize, convergePass, initGain, sigma, isMinimizeScore);
optimizer.initModel(0, 0);//TODO optimal initial parameters
ndl = new NBESTDiscriminativeLearner(optimizer, new HashSet<String>(crfModel.keySet()));
ndl.resetBaselineFeat();//add and init baseline feature
}else{//perceptron
HashMap<String,Double> perceptronSumModel = new HashMap<String,Double>();