Package fr.lip6.jkernelmachines.kernel.typed

Examples of fr.lip6.jkernelmachines.kernel.typed.DoubleGaussL2


  @Before
  public void setUp() throws Exception {
    GaussianGenerator g = new GaussianGenerator(10, 5.0f, 1.0);
    train = g.generateList(100);
   
    svm = new DoubleLLSVM();
    svm.setK(4);
    svm.setNn(2);
  }
View Full Code Here


      // save current classifier
      model.classifier = svm;
    } else if ("pegasos".equalsIgnoreCase(classifierBox.getSelectedItem()
        .toString())) {
      DoublePegasosSVM svm = new DoublePegasosSVM();

      svm.setLambda(1. / (train.size() * Double
          .parseDouble(regularizationField.getText())));
      svm.setK(train.size() / 20);
      svm.setT(10 * train.size());
      svm.train(localTrain);

      // info
      classnameLabel.setText(svm.getClass().getSimpleName());
      svLabel.setText("N/A");

      // save current classifier
      model.classifier = svm;
    } else if ("simplemkl".equalsIgnoreCase(classifierBox.getSelectedItem()
        .toString())) {
      SimpleMKL<double[]> svm = new SimpleMKL<double[]>();
      svm.setC(Double.parseDouble(regularizationField.getText()));

      double[] G = { 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6 };
//      int dim = train.get(0).sample.length;
      for (double g : G) {
        svm.addKernel(new DoubleGaussL2(g));
//        // for(int i = 0 ; i < dim ; i++) {
//        // IndexDoubleGaussL2 k = new IndexDoubleGaussL2(i);
//        // k.setGamma(g);
//        // svm.addKernel(k);
//        // }
      }
      for (int d = 1; d < 5; d++) {
        svm.addKernel(new DoublePolynomial(d));
        svm.addKernel(new DoubleHPolynomial(d));
      }
      svm.train(localTrain);

      // info
      classnameLabel.setText(svm.getClass().getSimpleName());
      double[] alphas = svm.getAlphas();
      int sv = 0;
      for (int s = 0; s < alphas.length; s++) {
        if (alphas[s] != 0) {
          sv++;
        }
      }
      svLabel.setText("" + sv);
      validate();
      // save current classifier
      model.classifier = svm;
    } else if ("qnpkl".equalsIgnoreCase(classifierBox.getSelectedItem()
        .toString())) {
      DoubleQNPKL svm = new DoubleQNPKL();
      svm.setC(Double.parseDouble(regularizationField.getText()));
      DebugPrinter.setDebugLevel(2);

      svm.train(localTrain);
      // info
      classnameLabel.setText(svm.getClass().getSimpleName());
      double[] alphas = svm.getAlphas();
      int sv = 0;
      for (int s = 0; s < alphas.length; s++) {
        if (alphas[s] != 0) {
          sv++;
        }
View Full Code Here

  {
    debug.println(2, "training on "+train.size()+" train data and "+test.size()+" test data");
   
    //first training
    debug.print(3, "first training ");
    svm = new DoublePegasosSVM();
    svm.setLambda(lambda);
    svm.setK(k);
    svm.setT(T);
    svm.setT0(t0);
    svm.train(train);
    debug.println(3, " done.");
   
    //affect numplus highest output to plus class
    debug.println(3, "affecting 1 to the "+numplus+" highest output");
    SortedSet<TrainingSample<double[]>> sorted = new TreeSet<TrainingSample<double[]>>(new Comparator<TrainingSample<double[]>>(){

      @Override
      public int compare(TrainingSample<double[]> o1, TrainingSample<double[]> o2) {
        int ret = (new Double(svm.valueOf(o2.sample))).compareTo(svm.valueOf(o1.sample));
        if(ret == 0)
          ret = -1;
        return ret;
      }
     
    });
    sorted.addAll(test);
    debug.println(3, "sorted size : "+sorted.size()+" test size : "+test.size());
    int n = 0;
    for(TrainingSample<double[]> t : sorted)
    {
      if(n <= numplus)
        t.label = 1;
      else
        t.label = -1;
      n++;
    }
   
    double C = 1. / (train.size()*lambda) ;
    double Cminus = 1e-5;
    double Cplus = 1e-5 * numplus/(test.size() - numplus);
   
    while(Cminus < C || Cplus < C)
    {
      //solve full problem
      ArrayList<TrainingSample<double[]>> full = new ArrayList<TrainingSample<double[]>>();
      full.addAll(train);
      full.addAll(test);
     
      debug.print(3, "full training ");
      svm = new DoublePegasosSVM();
      svm.setLambda(lambda);
      svm.setK(k);
      svm.setT(T);
      svm.setT0(t0);
      svm.train(full);
      debug.println(3, "done.");
     
      boolean changed = false;
     
      do
      {
        changed = false;
        //0. computing error
        final Map<TrainingSample<double[]>, Double> errorCache = new HashMap<TrainingSample<double[]>, Double>();
        for(TrainingSample<double[]> t : test)
        {
          double err1 = 1. - t.label * svm.valueOf(t.sample);
          errorCache.put(t, err1);
        }
        debug.println(3, "Error cache done.");
       
        // 1 . sort by descending error
        sorted = new TreeSet<TrainingSample<double[]>>(new Comparator<TrainingSample<double[]>>(){

          @Override
          public int compare(TrainingSample<double[]> o1,
              TrainingSample<double[]> o2) {
            int ret = errorCache.get(o2).compareTo(errorCache.get(o1));
            if(ret == 0)
              ret = -1;
            return ret;
          }
        });
        sorted.addAll(test);
        List<TrainingSample<double[]>> sortedList = new ArrayList<TrainingSample<double[]>>();
        sortedList.addAll(sorted);
       
       
        debug.println(3, "sorting done, checking couple");
       
        // 2 . test all couple by decreasing error order
//        for(TrainingSample<T> i1 : sorted)
        for(int i = 0 ; i < sortedList.size(); i++)
        {
          TrainingSample<double[]> i1 = sortedList.get(i);
//          for(TrainingSample<T> i2 : sorted)
          for(int j = i+1; j < sortedList.size(); j++)
          {
            TrainingSample<double[]> i2 = sortedList.get(j);
            if(examine(i1, i2, errorCache))
            {
              debug.println(3, "couple found !");
              changed = true;
              break;
            }
          }
          if(changed)
            break;
        }

        if(changed)
        {
          debug.println(3, "re-training");
          svm = new DoublePegasosSVM();
          svm.setLambda(lambda);
          svm.setK(k);
          svm.setT(T);
          svm.setT0(t0);
          svm.train(full);
View Full Code Here

      validate();
      // save current classifier
      model.classifier = svm;
    } else if ("qnpkl".equalsIgnoreCase(classifierBox.getSelectedItem()
        .toString())) {
      DoubleQNPKL svm = new DoubleQNPKL();
      svm.setC(Double.parseDouble(regularizationField.getText()));
      DebugPrinter.setDebugLevel(2);

      svm.train(localTrain);
      // info
      classnameLabel.setText(svm.getClass().getSimpleName());
      double[] alphas = svm.getAlphas();
      int sv = 0;
      for (int s = 0; s < alphas.length; s++) {
        if (alphas[s] != 0) {
          sv++;
        }
View Full Code Here

      return;
    }
    System.out.println("Test features loaded.");

    // classifier
    DoubleSAG svm = new DoubleSAG();
    svm.setE(10);

    // AP evaluation
    ApEvaluator<double[]> ape = new ApEvaluator<double[]>(svm, train, test);
    System.out.println("training...");
    ape.evaluate();
View Full Code Here

      validate();
      // save current classifier
      model.classifier = svm;
    } else if ("sag".equalsIgnoreCase(classifierBox.getSelectedItem()
        .toString())) {
      DoubleSAG svm = new DoubleSAG();
      svm.setLambda(1. / (train.size() * Double
          .parseDouble(regularizationField.getText())));
      svm.setE(10);
      svm.train(localTrain);

      // info
      classnameLabel.setText(svm.getClass().getSimpleName());
      svLabel.setText("N/A");

      // save current classifier
      model.classifier = svm;
    } else if ("pegasos".equalsIgnoreCase(classifierBox.getSelectedItem()
        .toString())) {
      DoublePegasosSVM svm = new DoublePegasosSVM();

      svm.setLambda(1. / (train.size() * Double
          .parseDouble(regularizationField.getText())));
      svm.setK(train.size() / 20);
      svm.setT(10 * train.size());
      svm.train(localTrain);

      // info
      classnameLabel.setText(svm.getClass().getSimpleName());
      svLabel.setText("N/A");

      // save current classifier
      model.classifier = svm;
    } else if ("simplemkl".equalsIgnoreCase(classifierBox.getSelectedItem()
        .toString())) {
      SimpleMKL<double[]> svm = new SimpleMKL<double[]>();
      svm.setC(Double.parseDouble(regularizationField.getText()));

      double[] G = { 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6 };
//      int dim = train.get(0).sample.length;
      for (double g : G) {
        svm.addKernel(new DoubleGaussL2(g));
//        // for(int i = 0 ; i < dim ; i++) {
//        // IndexDoubleGaussL2 k = new IndexDoubleGaussL2(i);
//        // k.setGamma(g);
//        // svm.addKernel(k);
//        // }
      }
      for (int d = 1; d < 5; d++) {
        svm.addKernel(new DoublePolynomial(d));
        svm.addKernel(new DoubleHPolynomial(d));
      }
      svm.train(localTrain);

      // info
      classnameLabel.setText(svm.getClass().getSimpleName());
      double[] alphas = svm.getAlphas();
      int sv = 0;
      for (int s = 0; s < alphas.length; s++) {
        if (alphas[s] != 0) {
          sv++;
        }
      }
      svLabel.setText("" + sv);
      validate();
      // save current classifier
      model.classifier = svm;
    } else if ("qnpkl".equalsIgnoreCase(classifierBox.getSelectedItem()
        .toString())) {
      DoubleQNPKL svm = new DoubleQNPKL();
      svm.setC(Double.parseDouble(regularizationField.getText()));
      DebugPrinter.setDebugLevel(2);

      svm.train(localTrain);
      // info
      classnameLabel.setText(svm.getClass().getSimpleName());
      double[] alphas = svm.getAlphas();
      int sv = 0;
      for (int s = 0; s < alphas.length; s++) {
        if (alphas[s] != 0) {
          sv++;
        }
View Full Code Here

  {
    debug.println(2, "training on "+train.size()+" train data and "+test.size()+" test data");
   
    //first training
    debug.print(3, "first training ");
    svm = new DoubleSGDQN();
    DoubleSGDQN.VERBOSE = false;
    svm.train(train);
    debug.println(3, " done.");
   
    //affect numplus highest output to plus class
    debug.println(3, "affecting 1 to the "+numplus+" highest output");
    SortedSet<TrainingSample<double[]>> sorted = new TreeSet<TrainingSample<double[]>>(new Comparator<TrainingSample<double[]>>(){

      @Override
      public int compare(TrainingSample<double[]> o1, TrainingSample<double[]> o2) {
        int ret = (new Double(svm.valueOf(o2.sample))).compareTo(svm.valueOf(o1.sample));
        if(ret == 0)
          ret = -1;
        return ret;
      }
     
    });
    sorted.addAll(test);
    debug.println(4, "sorted size : "+sorted.size()+" test size : "+test.size());
    int n = 0;
    for(TrainingSample<double[]> t : sorted)
    {
      if(n <= numplus)
        t.label = 1;
      else
        t.label = -1;
      n++;
    }
   
    double Cminus = 1e-5;
    double Cplus = 1e-5 * numplus/(test.size() - numplus);
   
    while(Cminus < C || Cplus < C)
    {
      //solve full problem
      ArrayList<TrainingSample<double[]>> full = new ArrayList<TrainingSample<double[]>>();
      full.addAll(train);
      full.addAll(test);
     
      debug.print(3, "full training ");
      svm = new DoubleSGDQN();
      svm.setC((Cminus+Cplus)/2.);
      svm.train(full);
      debug.println(3, "done.");
     
      boolean changed = false;
     
      do
      {
        changed = false;
        //0. computing error
        final Map<TrainingSample<double[]>, Double> errorCache = new HashMap<TrainingSample<double[]>, Double>();
        for(TrainingSample<double[]> t : test)
        {
          double err1 = 1. - t.label * svm.valueOf(t.sample);
          errorCache.put(t, err1);
        }
        debug.println(3, "Error cache done.");
       
        // 1 . sort by descending error
        sorted = new TreeSet<TrainingSample<double[]>>(new Comparator<TrainingSample<double[]>>(){

          @Override
          public int compare(TrainingSample<double[]> o1,
              TrainingSample<double[]> o2) {
            int ret = errorCache.get(o2).compareTo(errorCache.get(o1));
            if(ret == 0)
              ret = -1;
            return ret;
          }
        });
        sorted.addAll(test);
        List<TrainingSample<double[]>> sortedList = new ArrayList<TrainingSample<double[]>>();
        sortedList.addAll(sorted);
       
       
        debug.println(3, "sorting done, checking couple");
       
        // 2 . test all couple by decreasing error order
//        for(TrainingSample<T> i1 : sorted)
        for(int i = 0 ; i < sortedList.size(); i++)
        {
          TrainingSample<double[]> i1 = sortedList.get(i);
//          for(TrainingSample<T> i2 : sorted)
          for(int j = i+1; j < sortedList.size(); j++)
          {
            TrainingSample<double[]> i2 = sortedList.get(j);
            if(examine(i1, i2, errorCache))
            {
              debug.println(3, "couple found !");
              changed = true;
              break;
            }
          }
          if(changed)
            break;
        }

        if(changed)
        {
          debug.println(3, "re-training");
          svm = new DoubleSGDQN();
          svm.setC((Cminus+Cplus)/2.);
          svm.train(full);
        }
      }
      while(changed);
View Full Code Here

    SDCADensity<double[]> sdca = new SDCADensity<double[]>(k);
    sdca.setC(100);
    sdca.train(train);

    DoubleGaussianMixtureModel gmm = new DoubleGaussianMixtureModel(1);
    gmm.train(train);

    SimpleMKLDensity<double[]> mkl = new SimpleMKLDensity<double[]>();
    for (int x = 0; x < dimension; x++) {
      mkl.addKernel(new IndexDoubleGaussL2(x));
    }
    mkl.setC(100);
    mkl.train(train);

    ArrayList<double[]> test = new ArrayList<double[]>();
    // 4. generate positive test samples
    for (int i = 0; i < nbPosTest; i++) {
      double[] t = new double[dimension];
      for (int x = 0; x < dimension; x++) {
        t[x] = ran.nextGaussian();
      }

      test.add(t);
    }

    // 6. test svm
    for (double[] t : test) {
      double value = svm.valueOf(t);
      double pvalue = parzen.valueOf(t);
      double dvalue = sdca.valueOf(t);
      double gvalue = gmm.valueOf(t);
      double mvalue = mkl.valueOf(t);

      System.out.println("smo: " + value + ", parzen: "
          + pvalue + ", sdca: " + dvalue + " , gmm: "
          + gvalue + " , mkl: " + mvalue);
View Full Code Here

  /**
   * Test method for {@link fr.lip6.jkernelmachines.density.DoubleGaussianMixtureModel#train(java.util.List)}.
   */
  @Test
  public final void testTrainListOfdouble() {
    DoubleGaussianMixtureModel gmm = new DoubleGaussianMixtureModel(2);
    gmm.train(train);
   
    for(double[] x : train) {
      assertTrue(gmm.valueOf(x) > 0);
      assertTrue(gmm.valueOf(x) <= 1);
    }
  }
View Full Code Here

    // train gmm
    List<double[]> list = new ArrayList<>(l.size());
    for(TrainingSample<double[]> t : l) {
      list.add(t.sample);
    }
    km = new DoubleKMeans(K);
    km.train(list);
    debug.println(1, "KM trained");
   
    // compute likelihoods
    list.clear();
View Full Code Here

TOP

Related Classes of fr.lip6.jkernelmachines.kernel.typed.DoubleGaussL2

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.