Package edu.stanford.nlp.fsm

Examples of edu.stanford.nlp.fsm.TransducerGraph$OutputCombiningProcessor


    outputType = NORMALIZED_LOG_PROBABILITIES;
  }

  @Override
  protected TransducerGraph doCompaction(TransducerGraph graph, List l1, List l3) {
    TransducerGraph result = graph;
    if (saveGraphs) {
      writeFile(result, "unminimized", (String) result.getEndNodes().iterator().next());
    }
    result = quasiDeterminizer.processGraph(result);
    result = new TransducerGraph(result, ocp); // combine outputs into inputs
    result = minimizer.minimizeFA(result); // minimize the thing
    //result = new  TransducerGraph(graph, otsp); // for debugging
    result = new TransducerGraph(result, ntsp)// pull out strings from sets returned by minimizer
    result = new TransducerGraph(result, isp); // split outputs from inputs
    if (saveGraphs) {
      writeFile(result, "exactminimized", (String) result.getEndNodes().iterator().next());
    }
    // for debugging do comparison of the paths accepted by graph and result
    //System.err.println(TransducerGraph.testGraphPaths(graph, result, 100));
    return result;
  }
View Full Code Here


    }
    int i = 0;
    for (Iterator<Entry<String, TransducerGraph>> graphIter = graphs.entrySet().iterator(); graphIter.hasNext();) {
      Map.Entry<String, TransducerGraph> entry = graphIter.next();
      String cat = entry.getKey();
      TransducerGraph graph = entry.getValue();
      if (verbose) {
        System.out.println("About to compact grammar for " + cat + " with numNodes=" + graph.getNodes().size());
      }
      trainPaths = allTrainPaths.remove(cat);// to save memory
      if (trainPaths == null) {
        trainPaths = new ArrayList<List<String>>();
      }
      testPaths = allTestPaths.remove(cat);// to save memory
      if (testPaths == null) {
        testPaths = new ArrayList<List<String>>();
      }
      TransducerGraph compactedGraph = doCompaction(graph, trainPaths, testPaths);
      i++;
      if (verbose) {
        System.out.println(i + ". Compacted grammar for " + cat + " from " + graph.getArcs().size() + " arcs to " + compactedGraph.getArcs().size() + " arcs.");
      }
      graphIter.remove(); // to save memory, remove the last thing
      compactedGraphs.add(compactedGraph);
    }
    Pair<UnaryGrammar, BinaryGrammar> ugbg = convertGraphsToGrammar(compactedGraphs, unaryRules, binaryRules);
View Full Code Here

    }
    return graphs;
  }

  protected static TransducerGraph getGraphFromMap(Map<String, TransducerGraph> m, String o) {
    TransducerGraph graph = m.get(o);
    if (graph == null) {
      graph = new TransducerGraph();
      graph.setEndNode(o);
      m.put(o, graph);
    }
    return graph;
  }
View Full Code Here

  protected boolean addOneUnaryRule(UnaryRule rule, Map<String, TransducerGraph> graphs) {
    String parentString = stateIndex.get(rule.parent);
    String childString = stateIndex.get(rule.child);
    if (isSyntheticState(parentString)) {
      String topcat = getTopCategoryOfSyntheticState(parentString);
      TransducerGraph graph = getGraphFromMap(graphs, topcat);
      Double output = new Double(smartNegate(rule.score()));
      graph.addArc(graph.getStartNode(), parentString, childString, output);
      return true;
    } else if (isSyntheticState(childString)) {
      // need to add Arc from synthetic state to endState
      TransducerGraph graph = getGraphFromMap(graphs, parentString);
      Double output = new Double(smartNegate(rule.score()));
      graph.addArc(childString, parentString, END, output); // parentString should the the same as endState
      graph.setEndNode(parentString);
      return true;
    } else {
      return false;
    }
  }
View Full Code Here

    Double output = new Double(smartNegate(rule.score())); // makes it a real  0 <= k <= infty
    String topcat = getTopCategoryOfSyntheticState(source);
    if (topcat == null) {
      throw new RuntimeException("can't have null topcat");
    }
    TransducerGraph graph = getGraphFromMap(graphs, topcat);
    graph.addArc(source, target, input, output);
    return true;
  }
View Full Code Here

TOP

Related Classes of edu.stanford.nlp.fsm.TransducerGraph$OutputCombiningProcessor

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.