Package de.lmu.ifi.dbs.elki.result.outlier

Examples of de.lmu.ifi.dbs.elki.result.outlier.ProbabilisticOutlierScore


    WritableDataStore<Double> scores = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT, Double.class);
    for(DBID id : relation.iterDBIDs()) {
      scores.put(id, 0.0);
    }
    Relation<Double> scoreres = new MaterializedRelation<Double>("Trivial no-outlier score", "no-outlier", TypeUtil.DOUBLE, scores, relation.getDBIDs());
    OutlierScoreMeta meta = new ProbabilisticOutlierScore();
    return new OutlierResult(meta, scoreres);
  }
View Full Code Here


    // Run the actual score process
    DataStore<Double> dbodscore = computeOutlierScores(database, distFunc, d);

    // Build result representation.
    Relation<Double> scoreResult = new MaterializedRelation<Double>("Density-Based Outlier Detection", "db-outlier", TypeUtil.DOUBLE, dbodscore, relation.getDBIDs());
    OutlierScoreMeta scoreMeta = new ProbabilisticOutlierScore();
    return new OutlierResult(scoreMeta, scoreResult);
  }
View Full Code Here

        score = 0.0;
      }
      scores.put(id, score);
    }
    Relation<Double> scoreres = new MaterializedRelation<Double>("By label outlier scores", "label-outlier", TypeUtil.DOUBLE, scores, relation.getDBIDs());
    OutlierScoreMeta meta = new ProbabilisticOutlierScore();
    return new OutlierResult(meta, scoreres);
  }
View Full Code Here

    WritableDataStore<Double> scores = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT, Double.class);
    for(DBID id : relation.iterDBIDs()) {
      scores.put(id, 1.0);
    }
    Relation<Double> scoreres = new MaterializedRelation<Double>("Trivial all-outlier score", "all-outlier", TypeUtil.DOUBLE, scores, relation.getDBIDs());
    OutlierScoreMeta meta = new ProbabilisticOutlierScore();
    return new OutlierResult(meta, scoreres);
  }
View Full Code Here

      }
      emo_score.put(id, maxProb);
      globmax = Math.max(maxProb, globmax);
    }
    Relation<Double> scoreres = new MaterializedRelation<Double>("EM outlier scores", "em-outlier", TypeUtil.DOUBLE, emo_score, relation.getDBIDs());
    OutlierScoreMeta meta = new ProbabilisticOutlierScore(0.0, globmax);
    // combine results.
    OutlierResult result = new OutlierResult(meta, scoreres);
    // TODO: add a keep-EM flag?
    result.addChildResult(emresult);
    return result;
View Full Code Here

      stepprog.setCompleted(logger);
    }

    // Build result representation.
    Relation<Double> scoreResult = new MaterializedRelation<Double>("Local Outlier Probabilities", "loop-outlier", TypeUtil.DOUBLE, loops, relation.getDBIDs());
    OutlierScoreMeta scoreMeta = new ProbabilisticOutlierScore();
    return new OutlierResult(scoreMeta, scoreResult);
  }
View Full Code Here

    // Run the actual score process
    DataStore<Double> dbodscore = computeOutlierScores(database, relation, d);

    // Build result representation.
    Relation<Double> scoreResult = new MaterializedRelation<Double>("Density-Based Outlier Detection", "db-outlier", TypeUtil.DOUBLE, dbodscore, relation.getDBIDs());
    OutlierScoreMeta scoreMeta = new ProbabilisticOutlierScore();
    return new OutlierResult(scoreMeta, scoreResult);
  }
View Full Code Here

      }
      emo_score.putDouble(id, maxProb);
      globmax = Math.max(maxProb, globmax);
    }
    Relation<Double> scoreres = new MaterializedRelation<Double>("EM outlier scores", "em-outlier", TypeUtil.DOUBLE, emo_score, relation.getDBIDs());
    OutlierScoreMeta meta = new ProbabilisticOutlierScore(0.0, globmax);
    // combine results.
    OutlierResult result = new OutlierResult(meta, scoreres);
    // TODO: add a keep-EM flag?
    result.addChildResult(emresult);
    return result;
View Full Code Here

      stepprog.setCompleted(logger);
    }

    // Build result representation.
    Relation<Double> scoreResult = new MaterializedRelation<Double>("Local Outlier Probabilities", "loop-outlier", TypeUtil.DOUBLE, loops, relation.getDBIDs());
    OutlierScoreMeta scoreMeta = new ProbabilisticOutlierScore();
    return new OutlierResult(scoreMeta, scoreResult);
  }
View Full Code Here

      // adjust to 0 to 1 range:
      score = (score - minscore) / (1 - minscore);
      scores.putDouble(id, score);
    }
    Relation<Double> scoreres = new MaterializedRelation<Double>("Model outlier scores", "model-outlier", TypeUtil.DOUBLE, scores, models.getDBIDs());
    OutlierScoreMeta meta = new ProbabilisticOutlierScore(0., 1.);
    return new OutlierResult(meta, scoreres);
  }
View Full Code Here

TOP

Related Classes of de.lmu.ifi.dbs.elki.result.outlier.ProbabilisticOutlierScore

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.