Package de.lmu.ifi.dbs.elki.math.linearalgebra.fitting

Examples of de.lmu.ifi.dbs.elki.math.linearalgebra.fitting.GaussianFittingFunction


    for(int i = 0; i < testx.length; i++) {
      s[i] = 1.0;
    }
    double[] params = { mean, stddevq, 1 };
    boolean[] dofit = { true, true, false };
    LevenbergMarquardtMethod fit = new LevenbergMarquardtMethod(new GaussianFittingFunction(), params, dofit, testx, testy, s);
    for(int i = 0; i < 50; i++) {
      fit.iterate();
    }
    double[] ps = fit.getParams();
    // compare results.
View Full Code Here


    for(int i = 0; i < testx.length; i++) {
      s[i] = 1.0;
    }
    double[] params = { mean, stddevq, 1 };
    boolean[] dofit = { true, true, false };
    LevenbergMarquardtMethod fit = new LevenbergMarquardtMethod(new GaussianFittingFunction(), params, dofit, testx, testy, s);
    for(int i = 0; i < 50; i++) {
      fit.iterate();
    }
    double[] ps = fit.getParams();
    // compare results.
View Full Code Here

    // " Amp: " + params[2]);
    return params;
  }

  private double[] run(double[] data, double[] params) {
    FittingFunction func = new GaussianFittingFunction();
    boolean[] dofit = { true, true, true };
    KernelDensityEstimator de = new KernelDensityEstimator(data, GaussianKernelDensityFunction.KERNEL);
    LevenbergMarquardtMethod fit = new LevenbergMarquardtMethod(func, params, dofit, data, de.getDensity(), de.getVariance());
    // for(int i = 0; i < 100; i++) {
    // fit.iterate();
View Full Code Here

    for(int i = 0; i < testx.length; i++) {
      s[i] = 1.0;
    }
    double[] params = { mean, stddevq, 1 };
    boolean[] dofit = { true, true, false };
    LevenbergMarquardtMethod fit = new LevenbergMarquardtMethod(new GaussianFittingFunction(), params, dofit, testx, testy, s);
    for(int i = 0; i < 50; i++) {
      fit.iterate();
    }
    double[] ps = fit.getParams();
    // compare results.
View Full Code Here

    for(int i = 0; i < testx.length; i++) {
      s[i] = 1.0;
    }
    double[] params = { mean, stddevq, 1 };
    boolean[] dofit = { true, true, false };
    LevenbergMarquardtMethod fit = new LevenbergMarquardtMethod(new GaussianFittingFunction(), params, dofit, testx, testy, s);
    for(int i = 0; i < 50; i++) {
      fit.iterate();
    }
    double[] ps = fit.getParams();
    // compare results.
View Full Code Here

    // " Amp: " + params[2]);
    return params;
  }

  private double[] run(double[] data, double[] params) {
    FittingFunction func = new GaussianFittingFunction();
    boolean[] dofit = { true, true, true };
    KernelDensityEstimator de = new KernelDensityEstimator(data, GaussianKernelDensityFunction.KERNEL);
    LevenbergMarquardtMethod fit = new LevenbergMarquardtMethod(func, params, dofit, data, de.getDensity(), de.getVariance());
    // for(int i = 0; i < 100; i++) {
    // fit.iterate();
View Full Code Here

TOP

Related Classes of de.lmu.ifi.dbs.elki.math.linearalgebra.fitting.GaussianFittingFunction

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.