Package de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel

Examples of de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix


  public OutlierResult getRanking(Relation<V> relation, int k) {
    // Fix a static set of IDs
    staticids = DBIDUtil.newArray(relation.getDBIDs());
    Collections.sort(staticids);

    KernelMatrix kernelMatrix = new KernelMatrix(primitiveKernelFunction, relation, staticids);
    PriorityQueue<FCPair<Double, DBID>> pq = new PriorityQueue<FCPair<Double, DBID>>(relation.size(), Collections.reverseOrder());

    // preprocess kNN neighborhoods
    assert (k == this.k);
    KNNQuery<V, DoubleDistance> knnQuery = QueryUtil.getKNNQuery(relation, getDistanceFunction(), k);
View Full Code Here


  public OutlierResult getFastRanking(Relation<V> relation, int k, int sampleSize) {
    // Fix a static set of IDs
    staticids = DBIDUtil.newArray(relation.getDBIDs());
    Collections.sort(staticids);

    KernelMatrix kernelMatrix = new KernelMatrix(primitiveKernelFunction, relation, staticids);

    PriorityQueue<FCPair<Double, DBID>> pq = new PriorityQueue<FCPair<Double, DBID>>(relation.size(), Collections.reverseOrder());
    // get Candidate Ranking
    for(DBID aKey : relation.iterDBIDs()) {
      HashMap<DBID, Double> dists = new HashMap<DBID, Double>(relation.size());
View Full Code Here

   *
   * @param data to get explanations for
   */
  // TODO: this should be done by the result classes.
  public void getExplanations(Relation<V> data) {
    KernelMatrix kernelMatrix = new KernelMatrix(primitiveKernelFunction, data, staticids);
    // PQ for Outlier Ranking
    PriorityQueue<FCPair<Double, DBID>> pq = new PriorityQueue<FCPair<Double, DBID>>(data.size(), Collections.reverseOrder());
    HashMap<DBID, LinkedList<DBID>> explaintab = new HashMap<DBID, LinkedList<DBID>>();
    // test all objects
    for(DBID objKey : data.iterDBIDs()) {
View Full Code Here

  public OutlierResult getRanking(Relation<V> relation, int k) {
    // Fix a static set of IDs
    staticids = DBIDUtil.newArray(relation.getDBIDs());
    staticids.sort();

    KernelMatrix kernelMatrix = new KernelMatrix(primitiveKernelFunction, relation, staticids);
    Heap<DoubleObjPair<DBID>> pq = new Heap<DoubleObjPair<DBID>>(relation.size(), Collections.reverseOrder());

    // preprocess kNN neighborhoods
    assert (k == this.k);
    KNNQuery<V, DoubleDistance> knnQuery = QueryUtil.getKNNQuery(relation, getDistanceFunction(), k);
View Full Code Here

  public OutlierResult getFastRanking(Relation<V> relation, int k, int sampleSize) {
    // Fix a static set of IDs
    staticids = DBIDUtil.newArray(relation.getDBIDs());
    staticids.sort();

    KernelMatrix kernelMatrix = new KernelMatrix(primitiveKernelFunction, relation, staticids);

    Heap<DoubleObjPair<DBID>> pq = new Heap<DoubleObjPair<DBID>>(relation.size(), Collections.reverseOrder());
    // get Candidate Ranking
    for(DBID aKey : relation.iterDBIDs()) {
      HashMap<DBID, Double> dists = new HashMap<DBID, Double>(relation.size());
View Full Code Here

   *
   * @param data to get explanations for
   */
  // TODO: this should be done by the result classes.
  public void getExplanations(Relation<V> data) {
    KernelMatrix kernelMatrix = new KernelMatrix(primitiveKernelFunction, data, staticids);
    // PQ for Outlier Ranking
    Heap<DoubleObjPair<DBID>> pq = new Heap<DoubleObjPair<DBID>>(data.size(), Collections.reverseOrder());
    HashMap<DBID, DBIDs> explaintab = new HashMap<DBID, DBIDs>();
    // test all objects
    for(DBID objKey : data.iterDBIDs()) {
View Full Code Here

TOP

Related Classes of de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.