for(Model model : models) {
TIntList ids = modelMap.get(model);
outStream.write("########################################################" + LINE_SEPARATOR);
outStream.write("## Size: " + ids.size() + LINE_SEPARATOR);
if(model instanceof GeneratorSingleCluster) {
GeneratorSingleCluster cursclus = (GeneratorSingleCluster) model;
outStream.write("########################################################" + LINE_SEPARATOR);
outStream.write("## Cluster: " + cursclus.getName() + LINE_SEPARATOR);
Vector cmin = cursclus.getClipmin();
Vector cmax = cursclus.getClipmax();
if(cmin != null && cmax != null) {
outStream.write("## Clipping: " + cmin.toString() + " - " + cmax.toString() + LINE_SEPARATOR);
}
outStream.write("## Density correction factor: " + cursclus.getDensityCorrection() + LINE_SEPARATOR);
outStream.write("## Generators:" + LINE_SEPARATOR);
for(int i = 0; i < cursclus.getDim(); i++) {
Distribution gen = cursclus.getDistribution(i);
outStream.write("## " + gen.toString() + LINE_SEPARATOR);
}
if(cursclus.getTransformation() != null && cursclus.getTransformation().getTransformation() != null) {
outStream.write("## Affine transformation matrix:" + LINE_SEPARATOR);
outStream.write(FormatUtil.format(cursclus.getTransformation().getTransformation(), "## ") + LINE_SEPARATOR);
}
outStream.write("## Discards: " + cursclus.getDiscarded() + " Retries left: " + cursclus.getRetries() + LINE_SEPARATOR);
double corf = /* cursclus.overweight */(double) (cursclus.getSize() + cursclus.getDiscarded()) / cursclus.getSize() / globdens;
outStream.write("## Density correction factor estimation: " + corf + LINE_SEPARATOR);
}
outStream.write("########################################################" + LINE_SEPARATOR);
for(TIntIterator iter = ids.iterator(); iter.hasNext();) {